IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v251y2019ic91.html
   My bibliography  Save this article

100 kWe power generation pilot plant with a solar thermochemical process: design, modeling, construction, and testing

Author

Listed:
  • Liu, Taixiu
  • Bai, Zhang
  • Zheng, Zhimei
  • Liu, Qibin
  • Lei, Jing
  • Sui, Jun
  • Jin, Hongguang

Abstract

Using concentrated solar thermal energy to drive endothermic thermochemical reactions offers promising prospects for the efficient utilization of solar energy by upgrading solar energy to high-quality chemical energy. A 100 kWe power generation pilot plant with mid-and-low temperature solar thermochemistry is designed, modeled, constructed, and tested in this work. The mid-and-low temperature solar thermochemistry and power generation are investigated experimentally, and successfully integrated operation is achieved for the first time. In the pilot plant, solar energy is upgraded into the chemical energy of solar fuel (H2 and CO) through the solar thermochemical process of the methanol decomposition reaction. The solar fuel is then fed to an internal combustion engine to generate power, achieving efficient and stable conversion of solar energy to electricity. The solar generation pilot plant is constructed, including four solar thermochemistry units (with a solar field area of 198 m2), power generation unit (100 kWe), syngas storage unit (with a volume of 19.2 m3), preheating unit, and measurement instrumentation. The thermodynamic performance of the pilot plant is tested under varying solar irradiation levels and power loads. The catalyst bed temperature distribution, methanol decomposition rate, and solar-to-chemical energy efficiency are experimentally investigated. The solar thermochemistry generates with catalyst bed temperatures of 70–290 °C, and a methanol conversion rate exceeding 80% is achieved. The solar-to-chemical energy efficiency is in the range of 37.12–45.51% for solar fluxes of 404–761 W/m2. The system achieves an electrical efficiency of 24.73%, and it can provide a fuel saving of 16.71% compared with direct methanol combustion systems.

Suggested Citation

  • Liu, Taixiu & Bai, Zhang & Zheng, Zhimei & Liu, Qibin & Lei, Jing & Sui, Jun & Jin, Hongguang, 2019. "100 kWe power generation pilot plant with a solar thermochemical process: design, modeling, construction, and testing," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:251:y:2019:i:c:91
    DOI: 10.1016/j.apenergy.2019.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919308736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Taixiu & Liu, Qibin & Lei, Jing & Sui, Jun & Jin, Hongguang, 2018. "Solar-clean fuel distributed energy system with solar thermochemistry and chemical recuperation," Applied Energy, Elsevier, vol. 225(C), pages 380-391.
    2. Yu, Tao & Yuan, Qinyuan & Lu, Jianfeng & Ding, Jing & Lu, Yanling, 2017. "Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system," Applied Energy, Elsevier, vol. 185(P2), pages 1994-2004.
    3. Jin, Jian & Wei, Xin & Liu, Mingkai & Yu, Yuhang & Li, Wenjia & Kong, Hui & Hao, Yong, 2018. "A solar methane reforming reactor design with enhanced efficiency," Applied Energy, Elsevier, vol. 226(C), pages 797-807.
    4. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Investigation of a solar-biomass gasification system with the production of methanol and electricity: Thermodynamic, economic and off-design operation," Applied Energy, Elsevier, vol. 243(C), pages 91-101.
    5. Su, Bosheng & Han, Wei & Jin, Hongguang, 2017. "Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1-11.
    6. Yue, Ting & Lior, Noam, 2017. "Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion," Applied Energy, Elsevier, vol. 191(C), pages 204-222.
    7. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    8. Hong, Hui & Liu, Qibin & Jin, Hongguang, 2012. "Operational performance of the development of a 15kW parabolic trough mid-temperature solar receiver/reactor for hydrogen production," Applied Energy, Elsevier, vol. 90(1), pages 137-141.
    9. Yue, Ting & Lior, Noam, 2017. "Thermodynamic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion," Energy, Elsevier, vol. 118(C), pages 671-683.
    10. Koepf, E. & Villasmil, W. & Meier, A., 2016. "Pilot-scale solar reactor operation and characterization for fuel production via the Zn/ZnO thermochemical cycle," Applied Energy, Elsevier, vol. 165(C), pages 1004-1023.
    11. Bai, Zhang & Liu, Qibin & Lei, Jing & Hong, Hui & Jin, Hongguang, 2017. "New solar-biomass power generation system integrated a two-stage gasifier," Applied Energy, Elsevier, vol. 194(C), pages 310-319.
    12. Hallenbeck, P.C. & Grogger, M. & Mraz, M. & Veverka, D., 2016. "Solar biofuels production with microalgae," Applied Energy, Elsevier, vol. 179(C), pages 136-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Xiangyu & Lu, Buchu & Dong, Hao & Liu, Qibin, 2023. "Solar-promoted photo-thermal CH4 reforming with CO2 over Ni/CeO2 catalyst: Experimental and mechanism studies," Applied Energy, Elsevier, vol. 348(C).
    2. Dong, Lei & Tao, Junyu & Zhang, Zhaoling & Yan, Beibei & Cheng, Zhanjun & Chen, Guanyi, 2021. "Energy utilization and disposal of herb residue by an integrated energy conversion system: A pilot scale study," Energy, Elsevier, vol. 215(PB).
    3. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Fang, Juan & Wu, Handong & Liu, Taixiu & Zheng, Zhimei & Lei, Jing & Liu, Qibin & Jin, Hongguang, 2020. "Thermodynamic evaluation of a concentrated photochemical–photovoltaic–thermochemical (CP-PV-T) system in the full-spectrum solar energy utilization," Applied Energy, Elsevier, vol. 279(C).
    5. Junxue Zhang & Lin Ma, 2021. "Urban ecological security dynamic analysis based on an innovative emergy ecological footprint method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16163-16191, November.
    6. Abuseada, Mostafa & Fisher, Timothy S., 2023. "Continuous solar-thermal methane pyrolysis for hydrogen and graphite production by roll-to-roll processing," Applied Energy, Elsevier, vol. 352(C).
    7. Lu, Buchu & Yan, Xiangyu & Liu, Qibin, 2023. "Enhanced solar hydrogen generation with the direct coupling of photo and thermal energy – An experimental and mechanism study," Applied Energy, Elsevier, vol. 331(C).
    8. Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
    9. Xing, Xueli & Xin, Yu & Sun, Fan & Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2021. "Test of a spectral splitting prototype hybridizing photovoltaic and solar syngas power generation," Applied Energy, Elsevier, vol. 304(C).
    10. Zeng, Jia & Xuan, Yimin & Li, Qiang, 2023. "Direct solar-thermal scalable-decomposition of methanol flowing through a nanoparticle-packed bed reactor under outdoor environment," Energy, Elsevier, vol. 280(C).
    11. Rodriguez-Pastor, D.A. & Garcia-Guzman, A. & Marqués-Valderrama, I. & Ortiz, C. & Carvajal, E. & Becerra, J.A. & Soltero, V.M. & Chacartegui, R., 2024. "A flexible methanol-to-methane thermochemical energy storage system (TCES) for gas turbine (GT) power production," Applied Energy, Elsevier, vol. 356(C).
    12. Zhang, Peiye & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2023. "Performance analysis on the parabolic trough solar receiver-reactor of methanol decomposition reaction under off-design conditions and during dynamic processes," Renewable Energy, Elsevier, vol. 205(C), pages 583-597.
    13. Liu, Xiangyu & Hong, Hui & Zhang, Hao & Cao, Yali & Qu, Wanjun & Jin, Hongguang, 2020. "Solar methanol by hybridizing natural gas chemical looping reforming with solar heat," Applied Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Zhang & Liu, Qibin & Lei, Jing & Jin, Hongguang, 2018. "Investigation on the mid-temperature solar thermochemical power generation system with methanol decomposition," Applied Energy, Elsevier, vol. 217(C), pages 56-65.
    2. Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
    3. Liu, Xiufeng & Hong, Hui & Jin, Hongguang, 2017. "Mid-temperature solar fuel process combining dual thermochemical reactions for effectively utilizing wider solar irradiance," Applied Energy, Elsevier, vol. 185(P2), pages 1031-1039.
    4. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    7. Liu, Taixiu & Liu, Qibin & Lei, Jing & Sui, Jun & Jin, Hongguang, 2018. "Solar-clean fuel distributed energy system with solar thermochemistry and chemical recuperation," Applied Energy, Elsevier, vol. 225(C), pages 380-391.
    8. Gu, Rong & Ding, Jing & Wang, Yarong & Yuan, Qinquan & Wang, Weilong & Lu, Jianfeng, 2019. "Heat transfer and storage performance of steam methane reforming in tubular reactor with focused solar simulator," Applied Energy, Elsevier, vol. 233, pages 789-801.
    9. Ma, Sainan & Chiu, Chun Pang & Zhu, Yujiao & Tang, Chun Yin & Long, Hui & Qarony, Wayesh & Zhao, Xinhua & Zhang, Xuming & Lo, Wai Hung & Tsang, Yuen Hong, 2017. "Recycled waste black polyurethane sponges for solar vapor generation and distillation," Applied Energy, Elsevier, vol. 206(C), pages 63-69.
    10. Tran, Thomas T.D. & Smith, Amanda D., 2017. "fEvaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1372-1388.
    11. Wang, Jiangjiang & Lu, Zherui & Li, Meng & Lior, Noam & Li, Weihua, 2019. "Energy, exergy, exergoeconomic and environmental (4E) analysis of a distributed generation solar-assisted CCHP (combined cooling, heating and power) gas turbine system," Energy, Elsevier, vol. 175(C), pages 1246-1258.
    12. Jin, Jian & Wang, Hongsheng & Shen, Yili & Shu, Ziyun & Liu, Taixiu & Li, Wenjia, 2023. "Thermodynamic analysis of methane to methanol through a two-step process driven by concentrated solar energy," Energy, Elsevier, vol. 273(C).
    13. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    14. Jin Wu & Jiangjiang Wang & Jing Wu & Chaofan Ma, 2019. "Exergy and Exergoeconomic Analysis of a Combined Cooling, Heating, and Power System Based on Solar Thermal Biomass Gasification," Energies, MDPI, vol. 12(12), pages 1-19, June.
    15. Yue, Ting & Lior, Noam, 2018. "Thermodynamic analysis of hybrid Rankine cycles using multiple heat sources of different temperatures," Applied Energy, Elsevier, vol. 222(C), pages 564-583.
    16. Yue, Ting & Lior, Noam, 2018. "Thermal hybrid power systems using multiple heat sources of different temperature: Thermodynamic analysis for Brayton cycles," Energy, Elsevier, vol. 165(PA), pages 639-665.
    17. Wang, Jiangjiang & Han, Zepeng & Guan, Zhimin, 2020. "Hybrid solar-assisted combined cooling, heating, and power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    19. Wang, Yangjie & Li, Qiang & Xuan, Yimin, 2019. "Thermal and chemical reaction performance analyses of solar thermochemical volumetric receiver/reactor with nanofluid," Energy, Elsevier, vol. 189(C).
    20. Qu, Wanjun & Hong, Hui & Li, Qiang & Xuan, Yimin, 2018. "Co-producing electricity and solar syngas by transmitting photovoltaics and solar thermochemical process," Applied Energy, Elsevier, vol. 217(C), pages 303-313.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:251:y:2019:i:c:91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.