IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i1p252-264.html
   My bibliography  Save this article

Performance study of the inverted absorber solar still with water depth and total dissolved solid

Author

Listed:
  • Dev, Rahul
  • Abdul-Wahab, Sabah A.
  • Tiwari, G.N.

Abstract

In this communication, an experimental study of inverted absorber solar still (IASS) and single slope solar still (SS) at different water depth and total dissolved solid (TDS) is presented. Experiments are conducted for the climatic condition of Muscat, Oman. A thermal model is also developed for the IASS and validated with experimental results. A fair agreement is found for the daytime operation of the IASS. It is observed that higher water temperature can be achieved by using the IASS in comparison to the SS. The daily yield obtained from the IASS are 6.302, 5.576 and 4.299Â kg/m2-day at water depths (dw) 0.01, 0.02 and 0.03Â m respectively. At same respective water depths, the daily yield obtained from the SS are 2.152, 1.931, 0.826Â kg/m2-day respectively lower than that of the IASS. It is observed that for climatic condition of Muscat, Oman, the optimum water depth for the IASS is 0.03Â m above which the addition of reflector under the basin does not affect its performance much more in comparison to that of the SS for sea water. The feed saline water and yielded distilled water are also compared for different TDS values, pH, and electrical conductance. On the basis of economic analysis of IASS, it is found that the annualized cost of distilled water in Indian rupees for Muscat climatic condition is Rs. 0.74, 0.66 and 0.62 (conversion factors: $ 1Â =Â Rs. 50 and 1 OMRÂ =Â Rs. 120) for the life time of 15, 20 and 25Â years respectively.

Suggested Citation

  • Dev, Rahul & Abdul-Wahab, Sabah A. & Tiwari, G.N., 2011. "Performance study of the inverted absorber solar still with water depth and total dissolved solid," Applied Energy, Elsevier, vol. 88(1), pages 252-264, January.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:1:p:252-264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00305-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Shiv & Tiwari, G.N., 2009. "Life cycle cost analysis of single slope hybrid (PV/T) active solar still," Applied Energy, Elsevier, vol. 86(10), pages 1995-2004, October.
    2. Yadav, Y.P. & Yadav, A.K. & Anwar, N. & Eames, P.C. & Norton, B., 1996. "An asymmetric line-axis compound parabolic concentrating single basin solar still," Renewable Energy, Elsevier, vol. 9(1), pages 737-740.
    3. Tiwari, G.N. & Yadav, Y.P. & Eames, P.C. & Norton, B., 1994. "Solar distillation systems: The state-of-the-art in design development and performance analysis," Renewable Energy, Elsevier, vol. 5(1), pages 509-516.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lakhani, Raksha & Doluweera, Ganesh & Bergerson, Joule, 2014. "Internalizing land use impacts for life cycle cost analysis of energy systems: A case of California’s photovoltaic implementation," Applied Energy, Elsevier, vol. 116(C), pages 253-259.
    2. Saeedi, F. & Sarhaddi, F. & Behzadmehr, A., 2015. "Optimization of a PV/T (photovoltaic/thermal) active solar still," Energy, Elsevier, vol. 87(C), pages 142-152.
    3. Muftah, Ali. F. & Alghoul, M.A. & Fudholi, Ahmad & Abdul-Majeed, M.M. & Sopian, K., 2014. "Factors affecting basin type solar still productivity: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 430-447.
    4. Abdul Ghani Olabi & Nabila Shehata & Hussein M. Maghrabie & Lobna A. Heikal & Mohammad Ali Abdelkareem & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Enas Taha Sayed, 2022. "Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals," Energies, MDPI, vol. 15(24), pages 1-31, December.
    5. Farhoodnea, Masoud & Mohamed, Azah & Khatib, Tamer & Elmenreich, Wilfried, 2015. "Performance evaluation and characterization of a 3-kWp grid-connected photovoltaic system based on tropical field experimental results: new results and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1047-1054.
    6. Abhishek Tiwari & Manish K. Rathod & Amit Kumar, 2023. "A comprehensive review of solar-driven desalination systems and its advancements," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1052-1083, February.
    7. Singh, D.B., 2018. "Energy metrics analysis of N identical evacuated tubular collectors integrated single slope solar still," Energy, Elsevier, vol. 148(C), pages 546-560.
    8. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Andrei Victor Sandu & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Mohd Sharizal Abdul Aziz & Norazian Mohamed Noor & Petrica Vizureanu , 2022. "Clean Water Production Enhancement through the Integration of Small-Scale Solar Stills with Solar Dish Concentrators (SDCs)—A Review," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    9. Souliotis, Manolis & Arnaoutakis, Nektarios & Panaras, Giorgos & Kavga, Angeliki & Papaefthimiou, Spiros, 2018. "Experimental study and Life Cycle Assessment (LCA) of Hybrid Photovoltaic/Thermal (PV/T) solar systems for domestic applications," Renewable Energy, Elsevier, vol. 126(C), pages 708-723.
    10. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    11. Sampathkumar, K. & Arjunan, T.V. & Pitchandi, P. & Senthilkumar, P., 2010. "Active solar distillation--A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1503-1526, August.
    12. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    14. Bait, Omar & Si–Ameur, Mohamed, 2016. "Numerical investigation of a multi-stage solar still under Batna climatic conditions: Effect of radiation term on mass and heat energy balances," Energy, Elsevier, vol. 98(C), pages 308-323.
    15. Fan, Wenke & Kokogiannakis, Georgios & Ma, Zhenjun, 2019. "Optimisation of life cycle performance of a double-pass photovoltaic thermal-solar air heater with heat pipes," Renewable Energy, Elsevier, vol. 138(C), pages 90-105.
    16. Suha A. Mohammed & Ali Basem & Zakaria M. Omara & Wissam H. Alawee & Hayder A. Dhahad & Fadl A. Essa & Abdekader S. Abdullah & Hasan Sh. Majdi & Iqbal Alshalal & Wan Nor Roslam Wan Isahak & Ahmed A. A, 2022. "Pyramidal Solar Stills via Hollow Cylindrical Perforated Fins, Inclined Rectangular Perforated Fins, and Nanocomposites: An Experimental Investigation," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    17. Tawfik, M.A. & Sagade, Atul A. & El-Sebaii, A.A. & Khallaf, A.M. & El-Shal, Hanan M. & Abd Allah, W.E., 2024. "Enabling sustainability in the decentralized energy sector through a solar cooker augmented with a bottom parabolic reflector: Performance modelling and 4E analyses," Energy, Elsevier, vol. 287(C).
    18. Sahoo, B.B. & Sahoo, N. & Mahanta, P. & Borbora, L. & Kalita, P. & Saha, U.K., 2008. "Performance assessment of a solar still using blackened surface and thermocol insulation," Renewable Energy, Elsevier, vol. 33(7), pages 1703-1708.
    19. Ma, Wei Wu & Rasul, M.G. & Liu, Gang & Li, Min & Tan, Xiao Hui, 2016. "Climate change impacts on techno-economic performance of roof PV solar system in Australia," Renewable Energy, Elsevier, vol. 88(C), pages 430-438.
    20. Sanchez, Alejandro Espejo & Goel, Nipun & Otanicar, Todd, 2022. "Novel hybrid solar nanophotonic distillation membrane with photovoltaic module for co-production of electricity and water," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:1:p:252-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.