IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp1350-1363.html
   My bibliography  Save this article

Application design and assessment of a novel small-decentralized solar distillation device based on energy, exergy, exergoeconomic, and enviroeconomic parameters

Author

Listed:
  • Fang, Shibiao
  • Mu, Lin
  • Tu, Wenrong

Abstract

In this paper, a novel small-decentralized desalination device is presented for increasing the temperature difference between brackish water and glass cover, so as to enhance the solar still’s freshwater productivity. This novel solar still device is based on installing a lens in front of the single slope solar still, and two lenses on still’s both sides, and a reflector over the back side of the solar still. The main objective of such novel still is to concentrate sunrays at the still’s bottom basin, through the refraction function of Fresnel lens. Furthermore, this novel still makes the reflector transferring its reflected sunrays to the solar still’s basin. Experiments are conducted under the climate conditions in Hangzhou city, China, for testing the novel still’s operational performance, and internal heat and mass transfer characteristics. Assessment of the novel still’s feasibility is performed based on energy, exergy, exergoeconomic, and enviroeconomic methodologies, as well as energy payback time. Results show that the productivity of novel still is 32% higher than that of conventional still, and novel solar still enhances the average hourly energy efficiency by 97.73%, compared to conventional solar still. While, the corresponding value of hourly exergy efficiency is also enhanced by 43.713%. Due to the higher energy and exergy outputs of novel still throughout its lifetime, the novel solar still proposed in this study mitigates more CO2 compared to the conventional still. Overall, incorporation three lenses and one reflector with the still is found promising in terms of freshwater yield, cost, and energy payback time compared to conventional one. Exergoeconomic and environmental parameters of the novel solar still are found more effective compared to the conventional one.

Suggested Citation

  • Fang, Shibiao & Mu, Lin & Tu, Wenrong, 2021. "Application design and assessment of a novel small-decentralized solar distillation device based on energy, exergy, exergoeconomic, and enviroeconomic parameters," Renewable Energy, Elsevier, vol. 164(C), pages 1350-1363.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1350-1363
    DOI: 10.1016/j.renene.2020.09.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120315007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rashidi, Saman & Akar, Shima & Bovand, Masoud & Ellahi, Rahmat, 2018. "Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still," Renewable Energy, Elsevier, vol. 115(C), pages 400-410.
    2. Mark A. Shannon & Paul W. Bohn & Menachem Elimelech & John G. Georgiadis & Benito J. Mariñas & Anne M. Mayes, 2008. "Science and technology for water purification in the coming decades," Nature, Nature, vol. 452(7185), pages 301-310, March.
    3. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater," Renewable Energy, Elsevier, vol. 136(C), pages 48-68.
    4. Karimi Estahbanati, M.R. & Ahsan, Amimul & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Ashrafmansouri, Seyedeh-Saba & Feilizadeh, Mansoor, 2016. "Theoretical and experimental investigation on internal reflectors in a single-slope solar still," Applied Energy, Elsevier, vol. 165(C), pages 537-547.
    5. Loni, Reyhaneh & Askari Asli-Areh, E. & Ghobadian, B. & Kasaeian, A.B. & Gorjian, Sh. & Najafi, G. & Bellos, Evangelos, 2020. "Research and review study of solar dish concentrators with different nanofluids and different shapes of cavity receiver: Experimental tests," Renewable Energy, Elsevier, vol. 145(C), pages 783-804.
    6. Nazari, Saeed & Safarzadeh, Habibollah & Bahiraei, Mehdi, 2019. "Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid," Renewable Energy, Elsevier, vol. 135(C), pages 729-744.
    7. Piña-Ortiz, A. & Hinojosa, J.F. & Pérez-Enciso, R.A. & Maytorena, V.M. & Calleja, R.A. & Estrada, C.A., 2019. "Thermal analysis of a finned receiver for a central tower solar system," Renewable Energy, Elsevier, vol. 131(C), pages 1002-1012.
    8. Panomwan Na Ayuthaya, Rattanapol & Namprakai, Pichai & Ampun, Wirut, 2013. "The thermal performance of an ethanol solar still with fin plate to increase productivity," Renewable Energy, Elsevier, vol. 54(C), pages 227-234.
    9. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Hu, En-yi & Jin, Wei, 2020. "Improving the performance of large-aperture parabolic trough solar concentrator using semi-circular absorber tube with external fin and flat-plate radiation shield," Renewable Energy, Elsevier, vol. 159(C), pages 1215-1223.
    10. Ma, Xinglong & Zheng, Hongfei & Liu, Shuli, 2019. "Optimization on a cylindrical Fresnel lens and its validation in a medium-temperature solar steam generation system," Renewable Energy, Elsevier, vol. 134(C), pages 1332-1343.
    11. Omara, Z.M. & Kabeel, A.E. & Abdullah, A.S., 2017. "A review of solar still performance with reflectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 638-649.
    12. Hassan, Hamdy & Yousef, Mohamed S. & Fathy, Mohamed & Ahmed, M. Salem, 2020. "Assessment of parabolic trough solar collector assisted solar still at various saline water mediums via energy, exergy, exergoeconomic, and enviroeconomic approaches," Renewable Energy, Elsevier, vol. 155(C), pages 604-616.
    13. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    14. Rashidi, Saman & Bovand, Masoud & Rahbar, Nader & Esfahani, Javad Abolfazli, 2018. "Steps optimization and productivity enhancement in a nanofluid cascade solar still," Renewable Energy, Elsevier, vol. 118(C), pages 536-545.
    15. Hassan, Hamdy & Ahmed, M. Salem & Fathy, Mohamed, 2019. "Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC)," Renewable Energy, Elsevier, vol. 135(C), pages 136-147.
    16. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Hu, En-yi & Xu, Zhi-cheng & Liu, Guang-peng & Li, Guo-shuai, 2020. "Improving the performance of a 2-stage large aperture parabolic trough solar concentrator using a secondary reflector designed by adaptive method," Renewable Energy, Elsevier, vol. 152(C), pages 23-33.
    17. Kalaiarasi, G. & Velraj, R. & Vanjeswaran, M.N. & Ganesh Pandian, N., 2020. "Experimental analysis and comparison of flat plate solar air heater with and without integrated sensible heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 255-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar R, Reji & Pandey, A.K. & Samykano, M. & Aljafari, Belqasem & Ma, Zhenjun & Bhattacharyya, Suvanjan & Goel, Varun & Ali, Imtiaz & Kothari, Richa & Tyagi, V.V., 2022. "Phase change materials integrated solar desalination system: An innovative approach for sustainable and clean water production and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali O. Al-Sulttani & Amimul Ahsan & Basim A. R. Al-Bakri & Mahir Mahmod Hason & Nik Norsyahariati Nik Daud & S. Idrus & Omer A. Alawi & Elżbieta Macioszek & Zaher Mundher Yaseen, 2022. "Double-Slope Solar Still Productivity Based on the Number of Rubber Scraper Motions," Energies, MDPI, vol. 15(21), pages 1-34, October.
    2. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    3. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).
    4. Halimi, Mohammed & El Amrani, Aumeur & Messaoudi, Choukri, 2021. "New experimental investigation of the circumferential temperature uniformity for a PTC absorber," Energy, Elsevier, vol. 234(C).
    5. Hassan, Hamdy, 2020. "Comparing the performance of passive and active double and single slope solar stills incorporated with parabolic trough collector via energy, exergy and productivity," Renewable Energy, Elsevier, vol. 148(C), pages 437-450.
    6. Rashidi, Saman & Bovand, Masoud & Rahbar, Nader & Esfahani, Javad Abolfazli, 2018. "Steps optimization and productivity enhancement in a nanofluid cascade solar still," Renewable Energy, Elsevier, vol. 118(C), pages 536-545.
    7. Gong, Jing-hu & Huang, Ji & Hu, Xiaojian & Wang, Jun & Lund, Peter D. & Gao, Caiyun, 2021. "Optimizing research on large-aperture parabolic trough condenser using two kinds of absorber tubes with reflector at 500 °C," Renewable Energy, Elsevier, vol. 179(C), pages 2187-2197.
    8. Amein, Hamza & Kassem, Mahmoud A. & Ali, Shady & Hassan, Muhammed A., 2021. "Integration of transparent insulation shells in linear solar receivers for enhanced energy and exergy performances," Renewable Energy, Elsevier, vol. 171(C), pages 344-359.
    9. Hassan, Hamdy & Yousef, Mohamed S. & Fathy, Mohamed & Ahmed, M. Salem, 2020. "Assessment of parabolic trough solar collector assisted solar still at various saline water mediums via energy, exergy, exergoeconomic, and enviroeconomic approaches," Renewable Energy, Elsevier, vol. 155(C), pages 604-616.
    10. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Kabeel, A.E. & Abdelgaied, Mohamed, 2020. "Enhancement of pyramid-shaped solar stills performance using a high thermal conductivity absorber plate and cooling the glass cover," Renewable Energy, Elsevier, vol. 146(C), pages 769-775.
    12. Shaaban, S., 2021. "Enhancement of the solar trough collector efficiency by optimizing the reflecting mirror profile," Renewable Energy, Elsevier, vol. 176(C), pages 40-49.
    13. Sharshir, S.W. & Peng, Guilong & Wu, Lirong & Essa, F.A. & Kabeel, A.E. & Yang, Nuo, 2017. "The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance," Applied Energy, Elsevier, vol. 191(C), pages 358-366.
    14. Chen, Yingxu & Ji, Xu & Yang, Bianfeng & Jia, Yicong & Wang, Mengqi, 2024. "Performance enhancement of compound parabolic concentrating vaporized desalination system by spraying and steam heat recovery," Renewable Energy, Elsevier, vol. 220(C).
    15. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2020. "Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis," Applied Energy, Elsevier, vol. 263(C).
    16. Gong, Jing-hu & Wang, Jun & Lund, Peter D., 2021. "Improving stability and heat transfer through a beam in a semi-circular absorber tube of a large-aperture trough solar concentrator," Energy, Elsevier, vol. 228(C).
    17. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    18. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    19. Dhivagar, Ramasamy & Shoeibi, Shahin & Parsa, Seyed Masoud & Hoseinzadeh, Siamak & Kargarsharifabad, Hadi & Khiadani, Mehdi, 2023. "Performance evaluation of solar still using energy storage biomaterial with porous surface: An experimental study and environmental analysis," Renewable Energy, Elsevier, vol. 206(C), pages 879-889.
    20. Okonkwo, Eric C. & Abdullatif, Yasser M. & AL-Ansari, Tareq, 2021. "A nanomaterial integrated technology approach to enhance the energy-water-food nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1350-1363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.