IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v187y2017icp627-639.html
   My bibliography  Save this article

Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry

Author

Listed:
  • Ding, Lu
  • Dai, Zhenghua
  • Guo, Qinghua
  • Yu, Guangsuo

Abstract

The effects of water on the pyrolysis and gasification characteristics of coal water slurry (CWS) and pulverized coals with different ranks have been studied in the present work. Rapid pyrolysis characteristics (i.e. char yield, char structure evolution) of raw carbonaceous materials with varied water contents were investigated by using a high frequency furnace at 800–1200°C. Moreover, gasification characteristics of the pyrolysis char were studied by using a thermogravimetric analyzer (TGA). The results indicate that at the pyrolysis temperature of 800°C, the char yield of Wu-ran-cha-bu (WRCB) lignite slightly decreased with increasing the water content from 2.1wt.% to 13.98wt.%, while that of Yun-nan (YN) lignite showed a more significant decrease with increasing water content from 2.2wt.% to 11.54wt.%. This could be attributed to a higher coal reactivity of YN lignite than that of WRCB lignite. When the pyrolysis temperature was at or above 1000°C, due to more significant in-situ coal-steam interactions, a lower char yield of both the pulverized lignites were observed with increasing water content from 2wt.% to above 10wt.%. CWS char presented a higher graphitization degree than pulverized coal char. The carbon microcrystalline structure factors (i.e. L002/d002 value) of pyrolysis char increased with coal rank, which might reflect the variation trend of the graphitization degree from low rank coal to high rank coal. During the rapid heat treatment processes, the water evaporation and the in-situ steam-char gasification were favorable for void formation for both pulverized coals with high water contents and CWS. Notably, during the gasification processes of three different rank coals at 1200°C, a more significant inhibition effect of residual ash on CWS char was observed compared to the pulverized parent coal char with high carbon conversion (x>0.9).

Suggested Citation

  • Ding, Lu & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo, 2017. "Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry," Applied Energy, Elsevier, vol. 187(C), pages 627-639.
  • Handle: RePEc:eee:appene:v:187:y:2017:i:c:p:627-639
    DOI: 10.1016/j.apenergy.2016.11.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916317172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gomez, Arturo & Mahinpey, Nader, 2015. "A new model to estimate CO2 coal gasification kinetics based only on parent coal characterization properties," Applied Energy, Elsevier, vol. 137(C), pages 126-133.
    2. Yamashita, Kei & Barreto, Leonardo, 2005. "Energyplexes for the 21st century: Coal gasification for co-producing hydrogen, electricity and liquid fuels," Energy, Elsevier, vol. 30(13), pages 2453-2473.
    3. Fatehi, Hesameddin & Bai, Xue-Song, 2017. "Structural evolution of biomass char and its effect on the gasification rate," Applied Energy, Elsevier, vol. 185(P2), pages 998-1006.
    4. Zhang, Fan & Xu, Deping & Wang, Yonggang & Argyle, Morris D. & Fan, Maohong, 2015. "CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst," Applied Energy, Elsevier, vol. 145(C), pages 295-305.
    5. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    6. Liu, Peng & Zhang, Dexiang & Wang, Lanlan & Zhou, Yang & Pan, Tieying & Lu, Xilan, 2016. "The structure and pyrolysis product distribution of lignite from different sedimentary environment," Applied Energy, Elsevier, vol. 163(C), pages 254-262.
    7. Wu, Chunfei & Budarin, Vitaliy L. & Wang, Meihong & Sharifi, Vida & Gronnow, Mark J. & Wu, Yajue & Swithenbank, Jim & Clark, James H. & Williams, Paul T., 2015. "CO2 gasification of bio-char derived from conventional and microwave pyrolysis," Applied Energy, Elsevier, vol. 157(C), pages 533-539.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Yu, Xu & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zheng, Yangfeng, 2023. "Effects of steam treatment on the internal moisture and physicochemical structure of coal and their implications for coalbed methane recovery," Energy, Elsevier, vol. 270(C).
    2. Lin, Xiongchao & Luo, Meng & Li, Shouyi & Yang, Yuanping & Chen, Xujun & Tian, Bin & Wang, Yonggang, 2017. "The evolutionary route of coal matrix during integrated cascade pyrolysis of a typical low-rank coal," Applied Energy, Elsevier, vol. 199(C), pages 335-346.
    3. Li, Dedi & Liu, Jianzhong & Wang, Shuangni & Cheng, Jun, 2020. "Study on coal water slurries prepared from coal chemical wastewater and their industrial application," Applied Energy, Elsevier, vol. 268(C).
    4. Yuan, XiangZhou & Fan, ShuMin & Choi, Seung Wan & Kim, Hyung-Taek & Lee, Ki Bong, 2017. "Potassium catalyst recovery process and performance evaluation of the recovered catalyst in the K2CO3-catalyzed steam gasification system," Applied Energy, Elsevier, vol. 195(C), pages 850-860.
    5. Geniy Kuznetsov & Dmitrii Antonov & Maxim Piskunov & Leonid Yanovskyi & Olga Vysokomornaya, 2022. "Alternative Liquid Fuels for Power Plants and Engines for Aviation, Marine, and Land Applications," Energies, MDPI, vol. 15(24), pages 1-21, December.
    6. Lu, Hantao & Gong, Yan & Guo, Qinghua & Wang, Yue & Song, Xudong & Yu, Guangsuo, 2024. "In-situ study on flow and rotation behaviors of coal particles near the burner plane in an impinging entrained-flow gasifier," Applied Energy, Elsevier, vol. 359(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Tongmin & Fan, Wenke & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo & Wang, Fuchen, 2016. "Variation of the coal chemical structure and determination of the char molecular size at the early stage of rapid pyrolysis," Applied Energy, Elsevier, vol. 179(C), pages 650-659.
    2. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    3. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    4. Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
    5. Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
    6. Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
    7. Saulov, Dmitry N. & Plumb, Ovid A. & Klimenko, A.Y., 2010. "Flame propagation in a gasification channel," Energy, Elsevier, vol. 35(3), pages 1264-1273.
    8. Tao, Meng & Jl, Xie & Xm, Li & Jw, Ma & Yang, Yue, 2020. "Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment," Energy, Elsevier, vol. 203(C).
    9. Wu, Zhiqiang & Yang, Wangcai & Meng, Haiyu & Zhao, Jun & Chen, Lin & Luo, Zhengyuan & Wang, Shuzhong, 2017. "Physicochemical structure and gasification reactivity of co-pyrolysis char from two kinds of coal blended with lignocellulosic biomass: Effects of the carboxymethylcellulose sodium," Applied Energy, Elsevier, vol. 207(C), pages 96-106.
    10. Kiso, F. & Matsuo, M., 2011. "A simulation study on the enhancement of the shift reaction by water injection into a gasifier," Energy, Elsevier, vol. 36(7), pages 4032-4040.
    11. Yang, Xiaoxia & Gu, Shengshen & Kheradmand, Amanj & Kan, Tao & He, Jing & Strezov, Vladimir & Zou, Ruiping & Yu, Aibing & Jiang, Yijiao, 2022. "Tunable syngas production from biomass: Synergistic effect of steam, Ni–CaO catalyst, and biochar," Energy, Elsevier, vol. 254(PB).
    12. Luo, Juan & Ma, Rui & Huang, Xiaofei & Sun, Shichang & Wang, Hao, 2020. "Bio-fuels generation and the heat conversion mechanisms in different microwave pyrolysis modes of sludge," Applied Energy, Elsevier, vol. 266(C).
    13. Adnan, Muflih A. & Hossain, Mohammad M. & Golam Kibria, Md, 2022. "Converting waste into fuel via integrated thermal and electrochemical routes: An analysis of thermodynamic approach on thermal conversion," Applied Energy, Elsevier, vol. 311(C).
    14. Song, Han & Starfelt, Fredrik & Daianova, Lilia & Yan, Jinyue, 2012. "Influence of drying process on the biomass-based polygeneration system of bioethanol, power and heat," Applied Energy, Elsevier, vol. 90(1), pages 32-37.
    15. Liu, Peng & Le, Jiawei & Wang, Lanlan & Pan, Tieying & Lu, Xilan & Zhang, Dexiang, 2016. "Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis," Applied Energy, Elsevier, vol. 183(C), pages 470-477.
    16. Cormos, Calin-Cristian, 2012. "Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)," Energy, Elsevier, vol. 42(1), pages 434-445.
    17. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.
    18. Zhang, Yuming & Yao, Meiqin & Gao, Shiqiu & Sun, Guogang & Xu, Guangwen, 2015. "Reactivity and kinetics for steam gasification of petroleum coke blended with black liquor in a micro fluidized bed," Applied Energy, Elsevier, vol. 160(C), pages 820-828.
    19. Wendi Chen & Fei Wang & Altaf Hussain Kanhar, 2017. "Sludge Acts as a Catalyst for Coal during the Co-Combustion Process Investigated by Thermogravimetric Analysis," Energies, MDPI, vol. 10(12), pages 1-11, December.
    20. Xiang, Xianan & Gong, Guangcai & Shi, Ying & Cai, Youchan & Wang, Chenhua, 2018. "Thermodynamic modeling and analysis of a serial composite process for biomass and coal co-gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2768-2778.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:187:y:2017:i:c:p:627-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.