Lipid content in microalgae determines the quality of biocrude and Energy Return On Investment of hydrothermal liquefaction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.07.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
- Bennion, Edward P. & Ginosar, Daniel M. & Moses, John & Agblevor, Foster & Quinn, Jason C., 2015. "Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways," Applied Energy, Elsevier, vol. 154(C), pages 1062-1071.
- Tian, Chunyan & Li, Baoming & Liu, Zhidan & Zhang, Yuanhui & Lu, Haifeng, 2014. "Hydrothermal liquefaction for algal biorefinery: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 933-950.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nie, Changliang & Pei, Haiyan & Jiang, Liqun & Cheng, Juan & Han, Fei, 2018. "Growth of large-cell and easily-sedimentation microalgae Golenkinia SDEC-16 for biofuel production and campus sewage treatment," Renewable Energy, Elsevier, vol. 122(C), pages 517-525.
- Baloch, Humair Ahmed & Nizamuddin, Sabzoi & Siddiqui, M.T.H. & Mubarak, N.M. & Mazari, Shaukat & Griffin, G.J. & Srinivasan, M.P., 2020. "Co-liquefaction of synthetic polyethylene and polyethylene bags with sugarcane bagasse under supercritical conditions: A comparative study," Renewable Energy, Elsevier, vol. 162(C), pages 2397-2407.
- Gu, Xiangyu & Yu, Liang & Pang, Na & Martinez-Fernandez, Jose Salomon & Fu, Xiao & Chen, Shulin, 2020. "Comparative techno-economic analysis of algal biofuel production via hydrothermal liquefaction: One stage versus two stages," Applied Energy, Elsevier, vol. 259(C).
- Pearce, Matthew & Shemfe, Mobolaji & Sansom, Christopher, 2016. "Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 166(C), pages 19-26.
- Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
- Giaconia, Alberto & Caputo, Giampaolo & Ienna, Antonio & Mazzei, Domenico & Schiavo, Benedetto & Scialdone, Onofrio & Galia, Alessandro, 2017. "Biorefinery process for hydrothermal liquefaction of microalgae powered by a concentrating solar plant: A conceptual study," Applied Energy, Elsevier, vol. 208(C), pages 1139-1149.
- Goknur Sisman-Aydin & Kemal Simsek, 2022. "Investigation of the Phycoremediation Potential of Freshwater Green Algae Golenkinia radiata for Municipal Wastewater," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
- Azizi, Kolsoom & Keshavarz Moraveji, Mostafa & Abedini Najafabadi, Hamed, 2018. "A review on bio-fuel production from microalgal biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3046-3059.
- Makoto M. Watanabe & Andreas Isdepsky, 2021. "Biocrude Oil Production by Integrating Microalgae Polyculture and Wastewater Treatment: Novel Proposal on the Use of Deep Water-Depth Polyculture of Mixotrophic Microalgae," Energies, MDPI, vol. 14(21), pages 1-29, October.
- Ayala-Cortés, Alejandro & Arcelus-Arrillaga, Pedro & Millan, Marcos & Arancibia-Bulnes, Camilo A. & Valadés-Pelayo, Patricio J. & Villafán-Vidales, Heidi Isabel, 2021. "Solar integrated hydrothermal processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
- Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Rizzo, Andrea Maria & Pari, Luigi, 2017. "Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production," Applied Energy, Elsevier, vol. 185(P2), pages 963-972.
- Hallenbeck, P.C. & Grogger, M. & Mraz, M. & Veverka, D., 2016. "Solar biofuels production with microalgae," Applied Energy, Elsevier, vol. 179(C), pages 136-145.
- Azizi, Kolsoom & Moshfegh Haghighi, Ali & Keshavarz Moraveji, Mostafa & Olazar, Martin & Lopez, Gartzen, 2019. "Co-pyrolysis of binary and ternary mixtures of microalgae, wood and waste tires through TGA," Renewable Energy, Elsevier, vol. 142(C), pages 264-271.
- Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
- Shahnazari, Mahdi & Bahri, Parisa A. & Parlevliet, David & Minakshi, Manickam & Moheimani, Navid R., 2017. "Sustainable conversion of light to algal biomass and electricity: A net energy return analysis," Energy, Elsevier, vol. 131(C), pages 218-229.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gu, X. & Martinez-Fernandez, J.S. & Pang, N. & Fu, X. & Chen, S., 2020. "Recent development of hydrothermal liquefaction for algal biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
- Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
- Li, Chenlin & Aston, John E. & Lacey, Jeffrey A. & Thompson, Vicki S. & Thompson, David N., 2016. "Impact of feedstock quality and variation on biochemical and thermochemical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 525-536.
- Pearce, Matthew & Shemfe, Mobolaji & Sansom, Christopher, 2016. "Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 166(C), pages 19-26.
- Xu, Donghai & Guo, Shuwei & Liu, Liang & Lin, Guike & Wu, Zhiqiang & Guo, Yang & Wang, Shuzhong, 2019. "Heterogeneous catalytic effects on the characteristics of water-soluble and water-insoluble biocrudes in chlorella hydrothermal liquefaction," Applied Energy, Elsevier, vol. 243(C), pages 165-174.
- Ahmad, Nabeel & Ahmad, Nauman & Maafa, Ibrahim M. & Ahmed, Usama & Akhter, Parveen & Shehzad, Nasir & Amjad, Um-e-salma & Hussain, Murid & Javaid, Momina, 2020. "Conversion of poly-isoprene based rubber to value-added chemicals and liquid fuel via ethanolysis: Effect of operating parameters on product quality and quantity," Energy, Elsevier, vol. 191(C).
- Jukka Lappalainen & David Baudouin & Ursel Hornung & Julia Schuler & Kristian Melin & Saša Bjelić & Frédéric Vogel & Jukka Konttinen & Tero Joronen, 2020. "Sub- and Supercritical Water Liquefaction of Kraft Lignin and Black Liquor Derived Lignin," Energies, MDPI, vol. 13(13), pages 1-45, June.
- Mei, Danhua & Liu, Shiyun & Wang, Sen & Zhou, Renwu & Zhou, Rusen & Fang, Zhi & Zhang, Xianhui & Cullen, Patrick J. & Ostrikov, Kostya (Ken), 2020. "Plasma-enabled liquefaction of lignocellulosic biomass: Balancing feedstock content for maximum energy yield," Renewable Energy, Elsevier, vol. 157(C), pages 1061-1071.
- Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
- Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
- Farhad M. Hossain & Jana Kosinkova & Richard J. Brown & Zoran Ristovski & Ben Hankamer & Evan Stephens & Thomas J. Rainey, 2017. "Experimental Investigations of Physical and Chemical Properties for Microalgae HTL Bio-Crude Using a Large Batch Reactor," Energies, MDPI, vol. 10(4), pages 1-16, April.
- Déniel, Maxime & Haarlemmer, Geert & Roubaud, Anne & Weiss-Hortala, Elsa & Fages, Jacques, 2016. "Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1632-1652.
- Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
- Wu, Xiao-Fei & Yin, Shuang-Shuang & Zhou, Qian & Li, Ming-Fei & Peng, Feng & Xiao, Xiao, 2019. "Subcritical liquefaction of lignocellulose for the production of bio-oils in ethanol/water system," Renewable Energy, Elsevier, vol. 136(C), pages 865-872.
- Moreno-Sader, K. & Meramo-Hurtado, S.I. & González-Delgado, A.D., 2019. "Computer-aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 42-57.
- Shamsul, N.S. & Kamarudin, S.K. & Rahman, N.A., 2017. "Conversion of bio-oil to bio gasoline via pyrolysis and hydrothermal: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 538-549.
- Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
- Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
- Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
- Brand, Steffen & Hardi, Flabianus & Kim, Jaehoon & Suh, Dong Jin, 2014. "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol," Energy, Elsevier, vol. 68(C), pages 420-427.
More about this item
Keywords
Hydrothermal liquefaction; Microalgae; Biocrude; Biomass conversion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:156:y:2015:i:c:p:354-361. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.