IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v131y2017icp218-229.html
   My bibliography  Save this article

Sustainable conversion of light to algal biomass and electricity: A net energy return analysis

Author

Listed:
  • Shahnazari, Mahdi
  • Bahri, Parisa A.
  • Parlevliet, David
  • Minakshi, Manickam
  • Moheimani, Navid R.

Abstract

A substantial interest is growing in the cultivation of microalgae as a source of biofuel production, considering their relatively high lipid content, fast growth rates, use of alternative water sources, and growth on non-arable land. This paper conducts an energy life cycle analysis for a novel hypothetical hybrid energy system where the electricity required for microalgae cultivation is generated from semi-transparent PV panels to energise paddle wheels and light emitting diodes installed on raceway ponds. The combined system configuration allows for a full utilisation of the solar spectrum, while enhancing the photosynthetic productivity of microalgae cultivation and reducing the evaporation from raceway ponds. The findings of study for a hypothetical system installed in Western Australia show that the amount of land use substantially decreases by 43%, the productivity of microalgae cultivation increases by 75%, while the net energy return of the system remains significantly higher than one, in comparison with a microalgae cultivation system energised by grid electricity. Among a range of variables affecting the energy performance of the proposed system, the primary energy demand for PV panels and conversion efficiency of LEDs exert the highest impact on energy life cycle of the system.

Suggested Citation

  • Shahnazari, Mahdi & Bahri, Parisa A. & Parlevliet, David & Minakshi, Manickam & Moheimani, Navid R., 2017. "Sustainable conversion of light to algal biomass and electricity: A net energy return analysis," Energy, Elsevier, vol. 131(C), pages 218-229.
  • Handle: RePEc:eee:energy:v:131:y:2017:i:c:p:218-229
    DOI: 10.1016/j.energy.2017.04.162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217307259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    2. Moheimani, Navid Reza & Parlevliet, David, 2013. "Sustainable solar energy conversion to chemical and electrical energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 494-504.
    3. Obi, Manasseh & Bass, Robert, 2016. "Trends and challenges of grid-connected photovoltaic systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1082-1094.
    4. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    5. Ghadiryanfar, Mohsen & Rosentrater, Kurt A. & Keyhani, Alireza & Omid, Mahmoud, 2016. "A review of macroalgae production, with potential applications in biofuels and bioenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 473-481.
    6. Pérez-Alonso, J. & Pérez-García, M. & Pasamontes-Romera, M. & Callejón-Ferre, A.J., 2012. "Performance analysis and neural modelling of a greenhouse integrated photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4675-4685.
    7. Boruff, Bryan J. & Moheimani, Navid R. & Borowitzka, Michael A., 2015. "Identifying locations for large-scale microalgae cultivation in Western Australia: A GIS approach," Applied Energy, Elsevier, vol. 149(C), pages 379-391.
    8. Yoo, Gursong & Park, Min S. & Yang, Ji-Won & Choi, Minkee, 2015. "Lipid content in microalgae determines the quality of biocrude and Energy Return On Investment of hydrothermal liquefaction," Applied Energy, Elsevier, vol. 156(C), pages 354-361.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nwoba, Emeka G. & Parlevliet, David A. & Laird, Damian W. & Alameh, Kamal & Louveau, Julien & Pruvost, Jeremy & Moheimani, Navid R., 2020. "Energy efficiency analysis of outdoor standalone photovoltaic-powered photobioreactors coproducing lipid-rich algal biomass and electricity," Applied Energy, Elsevier, vol. 275(C).
    2. Ishika, Tasneema & Moheimani, Navid R. & Bahri, Parisa A., 2017. "Sustainable saline microalgae co-cultivation for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 356-368.
    3. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    4. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    5. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    6. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    7. Bibi, Riaz & Ahmad, Zulfiqar & Imran, Muhammad & Hussain, Sabir & Ditta, Allah & Mahmood, Shahid & Khalid, Azeem, 2017. "Algal bioethanol production technology: A trend towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 976-985.
    8. Safi, Carl & Zebib, Bachar & Merah, Othmane & Pontalier, Pierre-Yves & Vaca-Garcia, Carlos, 2014. "Morphology, composition, production, processing and applications of Chlorella vulgaris: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 265-278.
    9. Jayakumar, Saravanan & Yusoff, Mashitah M. & Rahim, Mohd Hasbi Ab. & Maniam, Gaanty Pragas & Govindan, Natanamurugaraj, 2017. "The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 33-47.
    10. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    11. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    12. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    13. Montingelli, M.E. & Benyounis, K.Y. & Quilty, B. & Stokes, J. & Olabi, A.G., 2017. "Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production," Energy, Elsevier, vol. 118(C), pages 1079-1089.
    14. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    15. John J. Milledge & Birthe V. Nielsen & Supattra Maneein & Patricia J. Harvey, 2019. "A Brief Review of Anaerobic Digestion of Algae for Bioenergy," Energies, MDPI, vol. 12(6), pages 1-22, March.
    16. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    17. Izabela Michalak, 2018. "Experimental processing of seaweeds for biofuels," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(3), May.
    18. Soratana, Kullapa & Khanna, Vikas & Landis, Amy E., 2013. "Re-envisioning the renewable fuel standard to minimize unintended consequences: A comparison of microalgal diesel with other biodiesels," Applied Energy, Elsevier, vol. 112(C), pages 194-204.
    19. Chia, Shir Reen & Ong, Hwai Chyuan & Chew, Kit Wayne & Show, Pau Loke & Phang, Siew-Moi & Ling, Tau Chuan & Nagarajan, Dillirani & Lee, Duu-Jong & Chang, Jo-Shu, 2018. "Sustainable approaches for algae utilisation in bioenergy production," Renewable Energy, Elsevier, vol. 129(PB), pages 838-852.
    20. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:131:y:2017:i:c:p:218-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.