IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v203y2024ics1364032124004635.html
   My bibliography  Save this article

Review and meta-analysis of Energy Return on Investment and environmental indicators of biofuels

Author

Listed:
  • Papagianni, Stavroula
  • Capellán-Pérez, Iñigo
  • Adam, Alexandros
  • Pastor, Amandine

Abstract

This study reviews the state-of-the-art (2014–2020) of biofuels from all generation categories, collecting information from 150 case studies to address concerns about the environmental sustainability and the potential of biofuels to contribute to the energy system without compromising its viability. Levels of Energy Return on Investment for refined products (EROIfinal) are used as reference: <3:1 (net sink for society) and >8:1 (better performance than global-average oil products). First-generation biofuels (from edible crops): none of the reviewed studies reported EROIfinal>8:1; most of the reviewed studies reported EROIfinal<3:1. Second-generation biofuels (from non-edible crops & residues): The EROIfinal can be higher compared to first-generation biofuels, although with large uncertainties/range. EROIfinal>3:1 in the case of herbaceous crops (∼4:1), and for crop and forest residues for certain feedstocks or under certain conditions; EROIfinal>8:1 in the case of agricultural residues under certain conditions. Third-generation biofuels (from algae): the technological advancements are slow; several challenges need to be overcome to reach large-scale production; reported EROIfinal close to 1:1. The collected data on environmental aspects for all generation types are fragmentary and insufficient to reach robust conclusions. Only 5 % of the reviewed case studies are based on pilot/demonstration scale plants, raising the question of potential discrepancies between theoretical and actual values. System boundaries and assumptions have a key role in the obtained results; therefore, the utilisation of standard protocols in the calculation of EROI across studies is essential. Studies should consider additional environmental metrics to address all sustainability concerns related to biofuel production.

Suggested Citation

  • Papagianni, Stavroula & Capellán-Pérez, Iñigo & Adam, Alexandros & Pastor, Amandine, 2024. "Review and meta-analysis of Energy Return on Investment and environmental indicators of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:rensus:v:203:y:2024:i:c:s1364032124004635
    DOI: 10.1016/j.rser.2024.114737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124004635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tiziano Gomiero, 2015. "Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? A Reasoned Overview of Potentials and Limits," Sustainability, MDPI, vol. 7(7), pages 1-31, June.
    2. Fizaine, Florian & Court, Victor, 2016. "Energy expenditure, economic growth, and the minimum EROI of society," Energy Policy, Elsevier, vol. 95(C), pages 172-186.
    3. Meyer, A.K.P. & Ehimen, E.A. & Holm-Nielsen, J.B., 2014. "Bioenergy production from roadside grass: A case study of the feasibility of using roadside grass for biogas production in Denmark," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 124-133.
    4. Keles, Derya & Choumert-Nkolo, Johanna & Combes Motel, Pascale & Nazindigouba Kéré, Eric, 2018. "Does the expansion of biofuels encroach on the forest?," Journal of Forest Economics, Elsevier, vol. 33(C), pages 75-82.
    5. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    6. Adam R. Brandt, 2017. "How Does Energy Resource Depletion Affect Prosperity? Mathematics of a Minimum Energy Return on Investment (EROI)," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-12, March.
    7. Emmanuel Aramendia & Paul E. Brockway & Peter G. Taylor & Jonathan B. Norman & Matthew K. Heun & Zeke Marshall, 2024. "Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems," Nature Energy, Nature, vol. 9(7), pages 803-816, July.
    8. Garofalo, Pasquale & Campi, Pasquale & Vonella, Alessandro Vittorio & Mastrorilli, Marcello, 2018. "Application of multi-metric analysis for the evaluation of energy performance and energy use efficiency of sweet sorghum in the bioethanol supply-chain: A fuzzy-based expert system approach," Applied Energy, Elsevier, vol. 220(C), pages 313-324.
    9. Uwe R. Fritsche & Leire Iriarte, 2014. "Sustainability Criteria and Indicators for the Bio-Based Economy in Europe: State of Discussion and Way Forward," Energies, MDPI, vol. 7(11), pages 1-12, October.
    10. Carlos Castro & Iñigo Capellán-Pérez, 2018. "Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-20, September.
    11. Konstantinos Anastasakis & Patrick Biller & René B. Madsen & Marianne Glasius & Ib Johannsen, 2018. "Continuous Hydrothermal Liquefaction of Biomass in a Novel Pilot Plant with Heat Recovery and Hydraulic Oscillation," Energies, MDPI, vol. 11(10), pages 1-23, October.
    12. Murphy, David J. & Hall, Charles A.S., 2011. "Adjusting the economy to the new energy realities of the second half of the age of oil," Ecological Modelling, Elsevier, vol. 223(1), pages 67-71.
    13. van Duren, Iris & Voinov, Alexey & Arodudu, Oludunsin & Firrisa, Melese Tesfaye, 2015. "Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency," Renewable Energy, Elsevier, vol. 74(C), pages 49-59.
    14. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    15. Yoo, Gursong & Park, Min S. & Yang, Ji-Won & Choi, Minkee, 2015. "Lipid content in microalgae determines the quality of biocrude and Energy Return On Investment of hydrothermal liquefaction," Applied Energy, Elsevier, vol. 156(C), pages 354-361.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Dumas & Antoine Dubois & Paolo Thiran & Pierre Jacques & Francesco Contino & Bertrand Cornélusse & Gauthier Limpens, 2022. "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-34, December.
    2. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    3. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    4. Elise Dupont & Marc Germain & Hervé Jeanmart, 2021. "Estimate of the Societal Energy Return on Investment (EROI)," Biophysical Economics and Resource Quality, Springer, vol. 6(1), pages 1-14, March.
    5. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    6. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    7. Ke Zhao & Jingxuan Feng & Lianyong Feng, 2021. "Analysis of the Long-Term Impact of Energy Expenditure on Economic Growth: A Case Study of China," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-16, December.
    8. Adrien Fabre, 2018. "Evolution of EROIs of Electricity Until 2050: Estimation Using the Input-Output Model THEMIS," Policy Papers 2018.09, FAERE - French Association of Environmental and Resource Economists.
    9. John W. Day & Christopher F. D’Elia & Adrian R. H. Wiegman & Jeffrey S. Rutherford & Charles A. S. Hall & Robert R. Lane & David E. Dismukes, 2018. "The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-16, March.
    10. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    11. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    12. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    13. Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.
    14. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    15. Hongshuo Yan & Lianyong Feng & Jianliang Wang & Yuanying Chi & Yue Ma, 2021. "A Comprehensive Net Energy Analysis and Outlook of Energy System in China," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-14, December.
    16. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).
    17. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    18. Luciano Celi, 2021. "Deriving EROI for Thirty Large Oil Companies Using the CO2 Proxy from 1999 to 2018," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-12, December.
    19. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    20. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:203:y:2024:i:c:s1364032124004635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.