IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v139y2021ics1364032120308595.html
   My bibliography  Save this article

Solar integrated hydrothermal processes: A review

Author

Listed:
  • Ayala-Cortés, Alejandro
  • Arcelus-Arrillaga, Pedro
  • Millan, Marcos
  • Arancibia-Bulnes, Camilo A.
  • Valadés-Pelayo, Patricio J.
  • Villafán-Vidales, Heidi Isabel

Abstract

Hydrothermal processes are attractive options for the transformation of mixtures of biomass with large amounts of water, i.e. above 20wt%. At hydrothermal conditions, the special properties of water makes it an attractive reaction medium to obtain several bio-based platform chemicals or fuel gases, such as hydroxymethilfurfural or fufurals, syngas, hydrogen, methane, etc. However, one of the main challenges is that a large amount of energy is required to heat reactants (mixture of water and biomass), which is usually achieved by combustion of a fraction of the bio-oil product. Therefore, to reduce this consumption, their integration with an external renewable energy source, such as concentrated solar radiation has been proposed. This approach has been recently analyzed by several research groups as an option to have sustainable and economically attractive processes. This work provides an overview of the different experimental and theoretical strategies to incorporate concentrated solar technologies into hydrothermal processing of biomass, including the main challenges of such integration for process technical feasibility.

Suggested Citation

  • Ayala-Cortés, Alejandro & Arcelus-Arrillaga, Pedro & Millan, Marcos & Arancibia-Bulnes, Camilo A. & Valadés-Pelayo, Patricio J. & Villafán-Vidales, Heidi Isabel, 2021. "Solar integrated hydrothermal processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120308595
    DOI: 10.1016/j.rser.2020.110575
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120308595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    2. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    3. Villafán-Vidales, H.I. & Arancibia-Bulnes, C.A. & Riveros-Rosas, D. & Romero-Paredes, H. & Estrada, C.A., 2017. "An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 894-908.
    4. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    5. Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
    6. Tremel, Alexander & Haselsteiner, Thomas & Kunze, Christian & Spliethoff, Hartmut, 2012. "Experimental investigation of high temperature and high pressure coal gasification," Applied Energy, Elsevier, vol. 92(C), pages 279-285.
    7. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    8. Rahbari, Alireza & Venkataraman, Mahesh B. & Pye, John, 2018. "Energy and exergy analysis of concentrated solar supercritical water gasification of algal biomass," Applied Energy, Elsevier, vol. 228(C), pages 1669-1682.
    9. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
    10. Tekin, Kubilay & Karagöz, Selhan & Bektaş, Sema, 2014. "A review of hydrothermal biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 673-687.
    11. Xiao, Chao & Liao, Qiang & Fu, Qian & Huang, Yun & Chen, Hao & Zhang, Hong & Xia, Ao & Zhu, Xun & Reungsang, Alissara & Liu, Zhidan, 2019. "A solar-driven continuous hydrothermal pretreatment system for biomethane production from microalgae biomass," Applied Energy, Elsevier, vol. 236(C), pages 1011-1018.
    12. Pearce, Matthew & Shemfe, Mobolaji & Sansom, Christopher, 2016. "Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 166(C), pages 19-26.
    13. Yoo, Gursong & Park, Min S. & Yang, Ji-Won & Choi, Minkee, 2015. "Lipid content in microalgae determines the quality of biocrude and Energy Return On Investment of hydrothermal liquefaction," Applied Energy, Elsevier, vol. 156(C), pages 354-361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chater, Hamza & Bakhattar, Ilias & Asbik, Mohamed & Koukouch, Abdelghani & Mouaky, Ammar & Ouachakradi, Zakariae, 2024. "Hybrid solar hydrothermal carbonization by integrating photovoltaic and parabolic trough technologies: Energy and exergy analyses, innovative designs, and mathematical Modelling," Energy, Elsevier, vol. 305(C).
    2. Chater, Hamza & Asbik, Mohamed & Koukouch, Abdelghani & Mouaky, Ammar & Zakariae, Ouachakradi & Sarh, Brahim, 2024. "Energy and exergy analysis of an innovative solar system for hydrothermal carbonization process using photovoltaic solar panels," Renewable Energy, Elsevier, vol. 231(C).
    3. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galadima, Ahmad & Muraza, Oki, 2018. "Hydrothermal liquefaction of algae and bio-oil upgrading into liquid fuels: Role of heterogeneous catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1037-1048.
    2. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    3. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    4. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    5. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    6. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    7. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    9. Wang, Wujun & Fan, Liwu & Laumert, Björn, 2021. "A theoretical heat transfer analysis of different indirectly-irradiated receiver designs for high-temperature concentrating solar power applications," Renewable Energy, Elsevier, vol. 163(C), pages 1983-1993.
    10. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Conroy, Tim & Collins, Maurice N. & Fisher, James & Grimes, Ronan, 2018. "Thermal and mechanical analysis of a sodium-cooled solar receiver operating under a novel heliostat aiming point strategy," Applied Energy, Elsevier, vol. 230(C), pages 590-614.
    12. Carlos E. Arreola-Ramos & Omar Álvarez-Brito & Juan Daniel Macías & Aldo Javier Guadarrama-Mendoza & Manuel A. Ramírez-Cabrera & Armando Rojas-Morin & Patricio J. Valadés-Pelayo & Heidi Isabel Villafá, 2021. "Experimental Evaluation and Modeling of Air Heating in a Ceramic Foam Volumetric Absorber by Effective Parameters," Energies, MDPI, vol. 14(9), pages 1-15, April.
    13. Yin, Sudong & Tan, Zhongchao, 2012. "Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions," Applied Energy, Elsevier, vol. 92(C), pages 234-239.
    14. Chater, Hamza & Bakhattar, Ilias & Asbik, Mohamed & Koukouch, Abdelghani & Mouaky, Ammar & Ouachakradi, Zakariae, 2024. "Hybrid solar hydrothermal carbonization by integrating photovoltaic and parabolic trough technologies: Energy and exergy analyses, innovative designs, and mathematical Modelling," Energy, Elsevier, vol. 305(C).
    15. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    16. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    17. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    18. Munir, M. Tajammal & Mansouri, Seyed Soheil & Udugama, Isuru A. & Baroutian, Saeid & Gernaey, Krist V. & Young, Brent R., 2018. "Resource recovery from organic solid waste using hydrothermal processing: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 64-75.
    19. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
    20. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120308595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.