IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v146y2015icp202-208.html
   My bibliography  Save this article

Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production

Author

Listed:
  • Dasgupta, Chitralekha Nag
  • Suseela, M.R.
  • Mandotra, S.K.
  • Kumar, Pankaj
  • Pandey, Manish K.
  • Toppo, Kiran
  • Lone, J.A.

Abstract

Dual application of biomass for biohydrogen and biodiesel production could be considered a feasible option for economic and sustainable energy production from microalgae. In this study, after a large screening of fresh water microalgal isolates, Scenedesmus sp. NBRI012 and Chlorella sp. NBRI029 have exhibited high biomass (1.31±0.11 and 2.62±0.13g/L respectively) and lipid (244.44±12.3 and 587.38±20.2mg/L respectively) yield with an organic carbon (acetate) source. Scenedesmus sp. NBRI012 has shown the highest H2 (maximum evolution of 17.72% v/v H2 of total gases) production; it produced H2 continuously for seven days in sulfur-deprived TAP media. Sulfur deprivation during the H2 production was found to increase the lipid content (410.03±18.5mg/L) of the residual biomass. Fatty acid profile of the lipid extracted from the residual biomass of Scenedesmus sp. NBRI012 has showed abundance of fatty acids with a carbon chain length of C16 and C18. Cetane number, iodine value, and saponification value of biodiesel were found suitable according to the range given by the Indian standard (IS 15607), Brazilian National Petroleum Agency (ANP255) and the European biodiesel standard EN14214.

Suggested Citation

  • Dasgupta, Chitralekha Nag & Suseela, M.R. & Mandotra, S.K. & Kumar, Pankaj & Pandey, Manish K. & Toppo, Kiran & Lone, J.A., 2015. "Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production," Applied Energy, Elsevier, vol. 146(C), pages 202-208.
  • Handle: RePEc:eee:appene:v:146:y:2015:i:c:p:202-208
    DOI: 10.1016/j.apenergy.2015.01.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915001063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.01.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Odlare, M. & Nehrenheim, E. & Ribé, V. & Thorin, E. & Gavare, M. & Grube, M., 2011. "Cultivation of algae with indigenous species – Potentials for regional biofuel production," Applied Energy, Elsevier, vol. 88(10), pages 3280-3285.
    2. Takeshita, Takayuki, 2011. "Competitiveness, role, and impact of microalgal biodiesel in the global energy future," Applied Energy, Elsevier, vol. 88(10), pages 3481-3491.
    3. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    4. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    5. Abou-Shanab, Reda A.I. & Hwang, Jae-Hoon & Cho, Yunchul & Min, Booki & Jeon, Byong-Hun, 2011. "Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production," Applied Energy, Elsevier, vol. 88(10), pages 3300-3306.
    6. Amaro, Helena M. & Guedes, A. Catarina & Malcata, F. Xavier, 2011. "Advances and perspectives in using microalgae to produce biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3402-3410.
    7. Davis, Ryan & Aden, Andy & Pienkos, Philip T., 2011. "Techno-economic analysis of autotrophic microalgae for fuel production," Applied Energy, Elsevier, vol. 88(10), pages 3524-3531.
    8. Holbrook, Gabriel P. & Davidson, Zachary & Tatara, Robert A. & Ziemer, Norbert L. & Rosentrater, Kurt A. & Scott Grayburn, W., 2014. "Use of the microalga Monoraphidium sp. grown in wastewater as a feedstock for biodiesel: Cultivation and fuel characteristics," Applied Energy, Elsevier, vol. 131(C), pages 386-393.
    9. Phukan, Mayur M. & Chutia, Rahul S. & Konwar, B.K. & Kataki, R., 2011. "Microalgae Chlorella as a potential bio-energy feedstock," Applied Energy, Elsevier, vol. 88(10), pages 3307-3312.
    10. Hugo Pereira & Luísa Barreira & Luísa Custódio & Salman Alrokayan & Fouzi Mouffouk & João Varela & Khalid M. Abu-Salah & Radhouan Ben-Hamadou, 2013. "Isolation and Fatty Acid Profile of Selected Microalgae Strains from the Red Sea for Biofuel Production," Energies, MDPI, vol. 6(6), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Kanhaiya & Ghosh, Supratim & Angelidaki, Irini & Holdt, Susan L. & Karakashev, Dimitar B. & Morales, Merlin Alvarado & Das, Debabrata, 2016. "Recent developments on biofuels production from microalgae and macroalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 235-249.
    2. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Yongjun & Liu, Hui, 2016. "Characteristics of hydrogen produced by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 168(C), pages 122-129.
    3. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giostri, A. & Binotti, M. & Macchi, E., 2016. "Microalgae cofiring in coal power plants: Innovative system layout and energy analysis," Renewable Energy, Elsevier, vol. 95(C), pages 449-464.
    2. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    3. Su, Yujie & Song, Kaihui & Zhang, Peidong & Su, Yuqing & Cheng, Jing & Chen, Xiao, 2017. "Progress of microalgae biofuel’s commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 402-411.
    4. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    5. Cui, Yan & Yuan, Wenqiao, 2013. "Thermodynamic modeling of algal cell–solid substrate interactions," Applied Energy, Elsevier, vol. 112(C), pages 485-492.
    6. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    7. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    8. Nikannapas Usmanbaha & Rattana Jariyaboon & Alissara Reungsang & Prawit Kongjan & Chen-Yeon Chu, 2019. "Optimization of Batch Dark Fermentation of Chlorella sp. Using Mixed-Cultures for Simultaneous Hydrogen and Butyric Acid Production," Energies, MDPI, vol. 12(13), pages 1-14, July.
    9. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    10. Pragya, Namita & Pandey, Krishan K. & Sahoo, P.K., 2013. "A review on harvesting, oil extraction and biofuels production technologies from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 159-171.
    11. Ramganesh Selvarajan & Tamás Felföldi & Tamás Tauber & Elumalai Sanniyasi & Timothy Sibanda & Memory Tekere, 2015. "Screening and Evaluation of Some Green Algal Strains (Chlorophyceae) Isolated from Freshwater and Soda Lakes for Biofuel Production," Energies, MDPI, vol. 8(7), pages 1-20, July.
    12. Cerón-García, M.C. & Macías-Sánchez, M.D. & Sánchez-Mirón, A. & García-Camacho, F. & Molina-Grima, E., 2013. "A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source," Applied Energy, Elsevier, vol. 103(C), pages 341-349.
    13. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    15. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    16. Fasahati, Peyman & Wu, Wenzhao & Maravelias, Christos T., 2019. "Process synthesis and economic analysis of cyanobacteria biorefineries: A superstructure-based approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Jiang, Liling & Luo, Shengjun & Fan, Xiaolei & Yang, Zhiman & Guo, Rongbo, 2011. "Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2," Applied Energy, Elsevier, vol. 88(10), pages 3336-3341.
    18. Gonçalves, Ana L. & Simões, Manuel, 2017. "Metabolic engineering of Escherichia coli for higher alcohols production: An environmentally friendly alternative to fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 580-589.
    19. Zhu, Liandong & Hiltunen, Erkki & Shu, Qing & Zhou, Weizheng & Li, Zhaohua & Wang, Zhongming, 2014. "Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid," Applied Energy, Elsevier, vol. 128(C), pages 103-110.
    20. Doshi, Amar & Pascoe, Sean & Coglan, Louisa & Rainey, Thomas J., 2016. "Economic and policy issues in the production of algae-based biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 329-337.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:146:y:2015:i:c:p:202-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.