IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48994-8.html
   My bibliography  Save this article

Atom-level interaction design between amines and support for achieving efficient and stable CO2 capture

Author

Listed:
  • Xin Sun

    (Southern University of Science and Technology)

  • Xuehua Shen

    (Southern University of Science and Technology
    Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City)

  • Hao Wang

    (Shenzhen Polytechnic University)

  • Feng Yan

    (Southern University of Science and Technology
    Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City)

  • Jiali Hua

    (Southern University of Science and Technology)

  • Guanghuan Li

    (Southern University of Science and Technology)

  • Zuotai Zhang

    (Southern University of Science and Technology
    Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City
    Shenzhen Polytechnic University)

Abstract

Amine-functionalized adsorbents offer substantial potential for CO2 capture owing to their selectivity and diverse application scenarios. However, their effectiveness is hindered by low efficiency and unstable cyclic performance. Here we introduce an amine-support system designed to achieve efficient and stable CO2 capture. Through atom-level design, each polyethyleneimine (PEI) molecule is precisely impregnated into the cage-like pore of MIL–101(Cr), forming stable composites via strong coordination with unsaturated Cr acid sites within the crystal lattice. The resulting adsorbent demonstrates a low regeneration energy (39.6 kJ/molCO2), excellent cyclic stability (0.18% decay per cycle under dry CO2 regeneration), high CO2 adsorption capacity (4.0 mmol/g), and rapid adsorption kinetics (15 min for saturation at 30 °C). These properties stem from the unique electron-level interaction between the amine and the support, effectively preventing carbamate products’ dehydration. This work presents a feasible and promising cost-effective and sustainable CO2 capture strategy.

Suggested Citation

  • Xin Sun & Xuehua Shen & Hao Wang & Feng Yan & Jiali Hua & Guanghuan Li & Zuotai Zhang, 2024. "Atom-level interaction design between amines and support for achieving efficient and stable CO2 capture," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48994-8
    DOI: 10.1038/s41467-024-48994-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48994-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48994-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Genggeng Qi & Liling Fu & Emmanuel P. Giannelis, 2014. "Sponges with covalently tethered amines for high-efficiency carbon capture," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    2. Chen, Chao & Xu, Huifang & Jiang, Qingbin & Lin, Zhan, 2021. "Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents," Energy, Elsevier, vol. 214(C).
    3. Woosung Choi & Kyungmin Min & Chaehoon Kim & Young Soo Ko & Jae Wan Jeon & Hwimin Seo & Yong-Ki Park & Minkee Choi, 2016. "Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    4. Xia Rong & Rammile Ettelaie & Sergey V. Lishchuk & Huaigang Cheng & Ning Zhao & Fukui Xiao & Fangqin Cheng & Hengquan Yang, 2019. "Liquid marble-derived solid-liquid hybrid superparticles for CO2 capture," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Chuanruo & Du, Zhilin & Jin, Junsu & Chen, Jian & Mi, Jianguo, 2020. "Epoxide-functionalized tetraethylenepentamine encapsulated into porous copolymer spheres for CO2 capture with superior stability," Applied Energy, Elsevier, vol. 260(C).
    2. Tao, Huayu & Qian, Xi & Zhou, Yi & Cheng, Hongfei, 2022. "Research progress of clay minerals in carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Li, Xiangyu & Wang, Zhiqing & Liu, Zheyu & Feng, Ru & Song, Shuangshuang & Huang, Jiejie & Fang, Yitian, 2022. "A novel preparation of solid amine sorbents for enhancing CO2 adsorption capacity using alumina-extracted waste," Energy, Elsevier, vol. 248(C).
    4. Jung, Wonho & Lee, Kwang Soon, 2019. "Novel short-cut estimation method for the optimum total energy demand of solid sorbents in an adsorption-based CO2 capture process," Energy, Elsevier, vol. 180(C), pages 640-648.
    5. Jung, Wonho & Lee, Jinwon, 2022. "Economic evaluation for four different solid sorbent processes with heat integration for energy-efficient CO2 capture based on PEI-silica sorbent," Energy, Elsevier, vol. 238(PC).
    6. Jung, Wonho & Lee, Jinwon, 2022. "Pseudo counter-current turbulent fluidized bed process with sensible heat recovery for energy-efficient CO2 capture using an amine-functionalized solid sorbent," Energy, Elsevier, vol. 240(C).
    7. Park, Junhyung & Won, Wangyun & Jung, Wonho & Lee, Kwang Soon, 2019. "One-dimensional modeling of a turbulent fluidized bed for a sorbent-based CO2 capture process with solid–solid sensible heat exchange," Energy, Elsevier, vol. 168(C), pages 1168-1180.
    8. Jung, Wonho & Park, Junhyung & Won, Wangyun & Lee, Kwang Soon, 2018. "Simulated moving bed adsorption process based on a polyethylenimine-silica sorbent for CO2 capture with sensible heat recovery," Energy, Elsevier, vol. 150(C), pages 950-964.
    9. An, Xuefei & Li, Tongxin & Chen, Jiaqi & Fu, Dong, 2023. "3D-hierarchical porous functionalized carbon aerogel from renewable cellulose: An innovative solid-amine adsorbent with high CO2 adsorption performance," Energy, Elsevier, vol. 274(C).
    10. Zhao, Peiyu & Yin, Yanchao & Xu, Xianmang & Yang, Deliang & Wang, Jin & Yang, Fuxing & Zhang, Guojie, 2022. "Facile fabrication of mesoporosity silica as support for solid amine CO2 adsorbents with enhanced adsorption capacity and kinetics," Energy, Elsevier, vol. 253(C).
    11. Zhu, Xuancan & Ge, Tianshu & Yang, Fan & Wang, Ruzhu, 2021. "Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Xiaomiao Guo & Nan Xue & Ming Zhang & Rammile Ettelaie & Hengquan Yang, 2022. "A supraparticle-based biomimetic cascade catalyst for continuous flow reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48994-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.