IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v129y2014icp238-242.html
   My bibliography  Save this article

Methane production of thermally pretreated Chlorella vulgaris and Scenedesmus sp. biomass at increasing biomass loads

Author

Listed:
  • Mendez, Lara
  • Mahdy, Ahmed
  • Ballesteros, Mercedes
  • González-Fernández, Cristina

Abstract

Anaerobic digestion of microalgae has been enhanced by several pretreatments; however the reported net energy ratio was negative. In order to cope with this issue, this investigation focused on thermal pretreatment (120°C for 40min) at increasing biomass loads of Chlorella vulgaris and Scenedesmus sp. During that thermal pretreatment, carbohydrates solubilisation prevailed over proteins for both strains. Regardless the biomass load pretreated, anaerobic biodegradability of C. vulgaris was enhanced by 50% and therefore, pretreatments of high biomass loads was suggested to counterbalance the energy input. On the other hand, thermally pretreated Scenedesmus sp. biomass supported an enhancement of 21–27%. The specific cell wall composition was suggested as a potential reason for the differences registered on their anaerobic biodegradabilities.

Suggested Citation

  • Mendez, Lara & Mahdy, Ahmed & Ballesteros, Mercedes & González-Fernández, Cristina, 2014. "Methane production of thermally pretreated Chlorella vulgaris and Scenedesmus sp. biomass at increasing biomass loads," Applied Energy, Elsevier, vol. 129(C), pages 238-242.
  • Handle: RePEc:eee:appene:v:129:y:2014:i:c:p:238-242
    DOI: 10.1016/j.apenergy.2014.04.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914004760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.04.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaoqiang & Nordlander, Eva & Thorin, Eva & Yan, Jinyue, 2013. "Microalgal biomethane production integrated with an existing biogas plant: A case study in Sweden," Applied Energy, Elsevier, vol. 112(C), pages 478-484.
    2. Frigon, Jean-Claude & Matteau-Lebrun, Frédérique & Hamani Abdou, Rekia & McGinn, Patrick J. & O’Leary, Stephen J.B. & Guiot, Serge R., 2013. "Screening microalgae strains for their productivity in methane following anaerobic digestion," Applied Energy, Elsevier, vol. 108(C), pages 100-107.
    3. Cai, Ting & Park, Stephen Y. & Racharaks, Ratanachat & Li, Yebo, 2013. "Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production," Applied Energy, Elsevier, vol. 108(C), pages 486-492.
    4. Passos, Fabiana & Solé, Maria & García, Joan & Ferrer, Ivet, 2013. "Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment," Applied Energy, Elsevier, vol. 108(C), pages 168-175.
    5. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavlo Bohutskyi & Duc Phan & Ruth E. Spierling & Trygve J. Lundquist, 2023. "Hydrothermal but Not Mechanical Pretreatment of Wastewater Algae Enhanced Anaerobic Digestion Energy Balance due to Improved Biomass Disintegration and Methane Production Kinetics," Energies, MDPI, vol. 16(20), pages 1-19, October.
    2. Ayala-Parra, Pedro & Liu, Yuanzhe & Field, Jim A. & Sierra-Alvarez, Reyes, 2017. "Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production," Renewable Energy, Elsevier, vol. 108(C), pages 410-416.
    3. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    4. Jazzar, Souhir & Olivares-Carrillo, Pilar & Pérez de los Ríos, Antonia & Marzouki, Mohamed Néjib & Acién-Fernández, Francisco Gabriel & Fernández-Sevilla, José María & Molina-Grima, Emilio & Smaali, I, 2015. "Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel," Applied Energy, Elsevier, vol. 148(C), pages 210-219.
    5. Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.
    6. Li, Wei & Guo, Jianbin & Cheng, Huicai & Wang, Wei & Dong, Renjie, 2017. "Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation," Applied Energy, Elsevier, vol. 189(C), pages 613-622.
    7. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Xiao, Chao & Liao, Qiang & Fu, Qian & Huang, Yun & Chen, Hao & Zhang, Hong & Xia, Ao & Zhu, Xun & Reungsang, Alissara & Liu, Zhidan, 2019. "A solar-driven continuous hydrothermal pretreatment system for biomethane production from microalgae biomass," Applied Energy, Elsevier, vol. 236(C), pages 1011-1018.
    9. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun & Wei, Pengfei & Lin, Richen & Murphy, Jerry D., 2018. "Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios," Applied Energy, Elsevier, vol. 230(C), pages 1082-1092.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    2. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    3. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Chowdhury, Raja & Freire, Fausto, 2015. "Bioenergy production from algae using dairy manure as a nutrient source: Life cycle energy and greenhouse gas emission analysis," Applied Energy, Elsevier, vol. 154(C), pages 1112-1121.
    5. Paolina Scarponi & Alessandro Bonetto & David Bolzonella & Sergi Astals & Cristina Cavinato, 2020. "Anaerobic Co-Digestion Effluent as Substrate for Chlorella vulgaris and Scenedesmus obliquus Cultivation," Energies, MDPI, vol. 13(18), pages 1-12, September.
    6. Zhu, Liandong & Hiltunen, Erkki & Shu, Qing & Zhou, Weizheng & Li, Zhaohua & Wang, Zhongming, 2014. "Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid," Applied Energy, Elsevier, vol. 128(C), pages 103-110.
    7. Thorin, Eva & Olsson, Jesper & Schwede, Sebastian & Nehrenheim, Emma, 2018. "Co-digestion of sewage sludge and microalgae – Biogas production investigations," Applied Energy, Elsevier, vol. 227(C), pages 64-72.
    8. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    9. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    10. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    11. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    12. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    13. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Grosser, Anna & Grobelak, Anna & Rorat, Agnieszka & Courtois, Pauline & Vandenbulcke, Franck & Lemière, Sébastien & Guyoneaud, Remy & Attard, Eleonore & Celary, Piotr, 2021. "Effects of silver nanoparticles on performance of anaerobic digestion of sewage sludge and associated microbial communities," Renewable Energy, Elsevier, vol. 171(C), pages 1014-1025.
    15. Barbera, Elena & Bertucco, Alberto & Kumar, Sandeep, 2018. "Nutrients recovery and recycling in algae processing for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 28-42.
    16. Jacob, Amita & Xia, Ao & Murphy, Jerry D., 2015. "A perspective on gaseous biofuel production from micro-algae generated from CO2 from a coal-fired power plant," Applied Energy, Elsevier, vol. 148(C), pages 396-402.
    17. Bai, Xue & Lant, Paul A. & Jensen, Paul D. & Astals, Sergi & Pratt, Steven, 2016. "Enhanced methane production from algal digestion using free nitrous acid pre-treatment," Renewable Energy, Elsevier, vol. 88(C), pages 383-390.
    18. Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
    19. Meneses-Reyes, José Carlos & Hernández-Eugenio, Guadalupe & Huber, David H. & Balagurusamy, Nagamani & Espinosa-Solares, Teodoro, 2018. "Oil-extracted Chlorella vulgaris biomass and glycerol bioconversion to methane via continuous anaerobic co-digestion with chicken litter," Renewable Energy, Elsevier, vol. 128(PA), pages 223-229.
    20. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:129:y:2014:i:c:p:238-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.