IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v90y2018icp28-42.html
   My bibliography  Save this article

Nutrients recovery and recycling in algae processing for biofuels production

Author

Listed:
  • Barbera, Elena
  • Bertucco, Alberto
  • Kumar, Sandeep

Abstract

The supply of nutrients is a great issue to a sustainable scale-up of microalgal biofuels production, as these photosynthetic microorganisms require large amounts of N, P and other micronutrients to grow, which turns into high fertilizers demand. Additionally, recovery and reuse of nutrients (particularly N & P) are a must to reduce the non-point pollution emanating from their release into water or air during the downstream processing steps to biofuels or bioproducts. In the recent years, strong research efforts have been paid for developing nutrient recovery and recycling techniques, in order to reduce the net amount of fertilizers required. One possibility is exploiting nutrients from waste streams, such as wastewaters, while others focus on the recovery of N and P from the non-fuel fraction of the produced microalgal biomass, which is then recycled to the cultivation system, in a closed-loop perspective. In both cases, the presence of possible contaminants as well as nutrients bioavailability can impact the biomass productivity compared to standard synthetic media. Although the nutrients recovery and reuse has been in the forefront for a few years, there are no review publications available yet. In this paper, state-of-the art studies on nutrients recovery and recycling methods in microalgae processing from the last decade are reviewed. The study focuses on the different N and P recovery methods and yields, as well as on their subsequent use in algal cultivation and impact on algae productivity. Possible bioproducts exploitation is considered, and perspectives of closed-loop material balances on a large-scale are eventually provided.

Suggested Citation

  • Barbera, Elena & Bertucco, Alberto & Kumar, Sandeep, 2018. "Nutrients recovery and recycling in algae processing for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 28-42.
  • Handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:28-42
    DOI: 10.1016/j.rser.2018.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118300923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    2. Pate, Ron & Klise, Geoff & Wu, Ben, 2011. "Resource demand implications for US algae biofuels production scale-up," Applied Energy, Elsevier, vol. 88(10), pages 3377-3388.
    3. Canter, Christina E. & Blowers, Paul & Handler, Robert M. & Shonnard, David R., 2015. "Implications of widespread algal biofuels production on macronutrient fertilizer supplies: Nutrient demand and evaluation of potential alternate nutrient sources," Applied Energy, Elsevier, vol. 143(C), pages 71-80.
    4. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    5. Heilmann, Steven M. & Jader, Lindsey R. & Harned, Laurie A. & Sadowsky, Michael J. & Schendel, Frederick J. & Lefebvre, Paul A. & von Keitz, Marc G. & Valentas, Kenneth J., 2011. "Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products," Applied Energy, Elsevier, vol. 88(10), pages 3286-3290.
    6. Cai, Ting & Park, Stephen Y. & Racharaks, Ratanachat & Li, Yebo, 2013. "Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production," Applied Energy, Elsevier, vol. 108(C), pages 486-492.
    7. Ayala-Parra, Pedro & Liu, Yuanzhe & Field, Jim A. & Sierra-Alvarez, Reyes, 2017. "Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production," Renewable Energy, Elsevier, vol. 108(C), pages 410-416.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekaterina Ovsyannikova & Andrea Kruse & Gero C. Becker, 2020. "Feedstock-Dependent Phosphate Recovery in a Pilot-Scale Hydrothermal Liquefaction Bio-Crude Production," Energies, MDPI, vol. 13(2), pages 1-21, January.
    2. Arauzo, P.J. & Olszewski, M.P. & Wang, X. & Pfersich, J. & Sebastian, V. & Manyà, J. & Hedin, N. & Kruse, A., 2020. "Assessment of the effects of process water recirculation on the surface chemistry and morphology of hydrochar," Renewable Energy, Elsevier, vol. 155(C), pages 1173-1180.
    3. Moon, Myounghoon & Park, Won-Kun & Lee, Soo Youn & Hwang, Kyung-Ran & Lee, Sangmin & Kim, Min-Sik & Kim, Bolam & Oh, You-Kwan & Lee, Jin-Suk, 2022. "Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.
    3. Canter, Christina E. & Blowers, Paul & Handler, Robert M. & Shonnard, David R., 2015. "Implications of widespread algal biofuels production on macronutrient fertilizer supplies: Nutrient demand and evaluation of potential alternate nutrient sources," Applied Energy, Elsevier, vol. 143(C), pages 71-80.
    4. Faried, M. & Samer, M. & Abdelsalam, E. & Yousef, R.S. & Attia, Y.A. & Ali, A.S., 2017. "Biodiesel production from microalgae: Processes, technologies and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 893-913.
    5. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    6. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    8. Chen, Yimin & Xu, Changan & Vaidyanathan, Seetharaman, 2020. "Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production," Applied Energy, Elsevier, vol. 261(C).
    9. Inês Guerra & Hugo Pereira & Margarida Costa & Joana T. Silva & Tamára Santos & João Varela & Marília Mateus & Joana Silva, 2021. "Operation Regimes: A Comparison Based on Nannochloropsis oceanica Biomass and Lipid Productivity," Energies, MDPI, vol. 14(6), pages 1-13, March.
    10. Efroymson, Rebecca A. & Pattullo, Molly B. & Mayes, Melanie A. & Mathews, Teresa J. & Mandal, Shovon & Schoenung, Susan, 2020. "Exploring the sustainability and sealing mechanisms of unlined ponds for growing algae for fuel and other commodity-scale products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    11. Langholtz, Matthew H. & Coleman, Andre M. & Eaton, Laurence M. & Wigmosta, Mark S. & Hellwinckel, Chad M. & Brandt, Craig C., 2016. "Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S," Renewable Energy, Elsevier, vol. 93(C), pages 201-214.
    12. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    13. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    14. Doshi, Amar & Pascoe, Sean & Coglan, Louisa & Rainey, Thomas J., 2016. "Economic and policy issues in the production of algae-based biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 329-337.
    15. Liu, Junying & Song, Yunmeng & Qiu, Wen, 2017. "Oleaginous microalgae Nannochloropsis as a new model for biofuel production: Review & analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 154-162.
    16. Moon, Myounghoon & Park, Won-Kun & Lee, Soo Youn & Hwang, Kyung-Ran & Lee, Sangmin & Kim, Min-Sik & Kim, Bolam & Oh, You-Kwan & Lee, Jin-Suk, 2022. "Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Amber Broch & Umakanta Jena & S. Kent Hoekman & Joel Langford, 2013. "Analysis of Solid and Aqueous Phase Products from Hydrothermal Carbonization of Whole and Lipid-Extracted Algae," Energies, MDPI, vol. 7(1), pages 1-18, December.
    18. Ayala-Parra, Pedro & Liu, Yuanzhe & Field, Jim A. & Sierra-Alvarez, Reyes, 2017. "Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production," Renewable Energy, Elsevier, vol. 108(C), pages 410-416.
    19. Vieira de Mendonça, Henrique & Assemany, Paula & Abreu, Mariana & Couto, Eduardo & Maciel, Alyne Martins & Duarte, Renata Lopes & Barbosa dos Santos, Marcela Granato & Reis, Alberto, 2021. "Microalgae in a global world: New solutions for old problems?," Renewable Energy, Elsevier, vol. 165(P1), pages 842-862.
    20. Calixto, Clediana Dantas & da Silva Santana, Jordana Kaline & Tibúrcio, Viviane Pereira & de Pontes, Liliana de Fátima Bezerra Lira & da Costa Sassi, Cristiane Francisca & da Conceição, Marta Maria & , 2018. "Productivity and fuel quality parameters of lipids obtained from 12 species of microalgae from the northeastern region of Brazil," Renewable Energy, Elsevier, vol. 115(C), pages 1144-1152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:28-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.