IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v122y2014icp189-195.html
   My bibliography  Save this article

Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis

Author

Listed:
  • Moretti, Marcia Maria de Souza
  • Bocchini-Martins, Daniela Alonso
  • Nunes, Christiane da Costa Carreira
  • Villena, Maria Arévalo
  • Perrone, Olavo Micali
  • Silva, Roberto da
  • Boscolo, Maurício
  • Gomes, Eleni

Abstract

This paper refers to the new proposal of pre-treatment of sugarcane bagasse with microwave associated to glycerol, seeking greater release of fermentable sugars during enzymatic hydrolysis. The residue was subjected to microwave irradiation for 5min with distilled water, phosphoric acid (pH 3.0) and glycerol (100%) before being enzymatically hydrolyzed using cellulase enzyme extract Myceliophthora thermophila M.7.7. and the commercial enzyme cocktail Celluclast 1.5L. A variety of analyses including measurement of BET surface analysis, MET, TGA, DTG, DSC, ATR-FTIR and PAD-HPLC were used to facilitate the understanding of the physical and chemical characteristics of the solid fraction resulting from pre-treatment. Infrared spectra of untreated and treated bagasse in microwave irradiation and glycerol showed significant differences in the regions 1635, 1600 and 1510 related vibration of the aromatic ring, and the band at 1100cm−1 is attributed to an overlap of C–O–H elongation of primary and secondary alcohols and at 980cm−1 to stretching of glycosidic linkages C–O–C. The thermal analysis showed that the bagasse treated in a microwave irradiation and glycerol has higher thermal stability compared to the untreated bagasse. The experimental results indicated that 5.4 and 11.3% w/w of lignin and xylan fractions, respectively, are degraded after pretreatment of bagasse in microwave heating with glycerol. The highest yields of hydrolysis of hemicellulose (22.4%) and cellulose (40.2%) w/w were obtained in the reaction mixture containing the enzyme and Celluclast commercial cane bagasse treated in a microwave irradiation and glycerol after 24h of incubation. The association of microwave and glycerol is a new alternative to deconstruction of lignocellulose structure.

Suggested Citation

  • Moretti, Marcia Maria de Souza & Bocchini-Martins, Daniela Alonso & Nunes, Christiane da Costa Carreira & Villena, Maria Arévalo & Perrone, Olavo Micali & Silva, Roberto da & Boscolo, Maurício & Gomes, 2014. "Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis," Applied Energy, Elsevier, vol. 122(C), pages 189-195.
  • Handle: RePEc:eee:appene:v:122:y:2014:i:c:p:189-195
    DOI: 10.1016/j.apenergy.2014.02.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914001561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.02.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monte, J.R. & Brienzo, M. & Milagres, A.M.F., 2011. "Utilization of pineapple stem juice to enhance enzyme-hydrolytic efficiency for sugarcane bagasse after an optimized pre-treatment with alkaline peroxide," Applied Energy, Elsevier, vol. 88(1), pages 403-408, January.
    2. Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
    3. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    4. Caspeta, Luis & Caro-Bermúdez, Mario A. & Ponce-Noyola, Teresa & Martinez, Alfredo, 2014. "Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol," Applied Energy, Elsevier, vol. 113(C), pages 277-286.
    5. Zheng, Yi & Pan, Zhongli & Zhang, Ruihong & Wang, Donghai, 2009. "Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production," Applied Energy, Elsevier, vol. 86(11), pages 2459-2465, November.
    6. Chen, Wei-Hsin & Ye, Song-Ching & Sheen, Herng-Kuang, 2012. "Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment," Applied Energy, Elsevier, vol. 93(C), pages 237-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fia, A.Z. & Amorim, J., 2021. "Heating of biomass in microwave household oven - A numerical study," Energy, Elsevier, vol. 218(C).
    2. Roberto Paz Cedeno, Fernando & Belon de Siqueira, Breno & Gabriel Solorzano Chavez, Eddyn & Ulises Miranda Roldán, Ismael & Moreira Ropelato, Leonardo & Paul Martínez Galán, Julián & Masarin, Fernando, 2022. "Recovery of cellulose and lignin from Eucalyptus by-product and assessment of cellulose enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 193(C), pages 807-820.
    3. Paz-Cedeno, Fernando Roberto & Henares, Lucas Ragnini & Solorzano-Chavez, Eddyn Gabriel & Scontri, Mateus & Picheli, Flávio Pereira & Miranda Roldán, Ismael Ulises & Monti, Rubens & Conceição de Olive, 2021. "Evaluation of the effects of different chemical pretreatments in sugarcane bagasse on the response of enzymatic hydrolysis in batch systems subject to high mass loads," Renewable Energy, Elsevier, vol. 165(P1), pages 1-13.
    4. Amílcar Díaz-González & Magdalena Yeraldi Perez Luna & Erik Ramírez Morales & Sergio Saldaña-Trinidad & Lizeth Rojas Blanco & Sergio de la Cruz-Arreola & Bianca Yadira Pérez-Sariñana & José Billerman , 2022. "Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod," Energies, MDPI, vol. 15(10), pages 1-17, May.
    5. Ashvinder Singh Gill & Kam Huei Wong & Steven Lim & Yean Ling Pang & Lloyd Ling & Sie Yon Lau, 2024. "Investigation of Microwave Irradiation and Ethanol Pre-Treatment toward Bioproducts Fractionation from Oil Palm Empty Fruit Bunch," Sustainability, MDPI, vol. 16(3), pages 1-20, February.
    6. Kalyani, Dayanand Chandrahas & Zamanzadeh, Mirzaman & Müller, Gerdt & Horn, Svein J., 2017. "Biofuel production from birch wood by combining high solid loading simultaneous saccharification and fermentation and anaerobic digestion," Applied Energy, Elsevier, vol. 193(C), pages 210-219.
    7. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.
    8. Licari, A. & Monlau, F. & Solhy, A. & Buche, P. & Barakat, A., 2016. "Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: Glucose yield and energy efficiency," Energy, Elsevier, vol. 102(C), pages 335-342.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
    2. Zhu, Shengdong & Huang, Wenjing & Huang, Wangxiang & Wang, Ke & Chen, Qiming & Wu, Yuanxin, 2015. "Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent," Applied Energy, Elsevier, vol. 154(C), pages 190-196.
    3. Wirawan, Ferdian & Cheng, Chieh-Lun & Kao, Wei-Chen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis," Applied Energy, Elsevier, vol. 100(C), pages 19-26.
    4. Kumar, Sachin & Dheeran, Pratibha & Singh, Surendra P. & Mishra, Indra M. & Adhikari, Dilip K., 2015. "Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse," Renewable Energy, Elsevier, vol. 83(C), pages 850-858.
    5. Yu, Kai Ling & Chen, Wei-Hsin & Sheen, Herng-Kuang & Chang, Jo-Shu & Lin, Chih-Sheng & Ong, Hwai Chyuan & Show, Pau Loke & Ng, Eng-Poh & Ling, Tau Chuan, 2020. "Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment," Renewable Energy, Elsevier, vol. 156(C), pages 349-360.
    6. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Borujeni, Nasim Espah & Karimi, Keikhosro & Denayer, Joeri F.M. & Kumar, Rajeev, 2022. "Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus," Energy, Elsevier, vol. 240(C).
    8. Peng, Huadong & Chen, Hongzhang & Qu, Yongshui & Li, Hongqiang & Xu, Jian, 2014. "Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH," Applied Energy, Elsevier, vol. 117(C), pages 142-148.
    9. Chen, Wei-Hsin & Lu, Ke-Miao & Tsai, Chi-Ming, 2012. "An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction," Applied Energy, Elsevier, vol. 100(C), pages 318-325.
    10. Cannella, David & Sveding, Per Viktor & Jørgensen, Henning, 2014. "PEI detoxification of pretreated spruce for high solids ethanol fermentation," Applied Energy, Elsevier, vol. 132(C), pages 394-403.
    11. Barakat, Abdellatif & Monlau, Florian & Solhy, Abderrahim & Carrere, Hélène, 2015. "Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement," Applied Energy, Elsevier, vol. 142(C), pages 240-246.
    12. Mohd Mokhta, Zafri & Ong, Mei Yin & Salman, Bello & Nomanbhay, Saifuddin & Salleh, Siti Fatihah & Chew, Kit Wayne & Show, Pau-Loke & Chen, Wei-Hsin, 2020. "Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location," Energy, Elsevier, vol. 190(C).
    13. Wirawan, Ferdian & Cheng, Chieh-Lun & Lo, Yung-Chung & Chen, Chun-Yen & Chang, Jo-Shu & Leu, Shao-Yuan & Lee, Duu-Jong, 2020. "Continuous cellulosic bioethanol co-fermentation by immobilized Zymomonas mobilis and suspended Pichia stipitis in a two-stage process," Applied Energy, Elsevier, vol. 266(C).
    14. Ranjan, Amrita & Khanna, Swati & Moholkar, V.S., 2013. "Feasibility of rice straw as alternate substrate for biobutanol production," Applied Energy, Elsevier, vol. 103(C), pages 32-38.
    15. Shafiei, Marzieh & Zilouei, Hamid & Zamani, Akram & Taherzadeh, Mohammad J. & Karimi, Keikhosro, 2013. "Enhancement of ethanol production from spruce wood chips by ionic liquid pretreatment," Applied Energy, Elsevier, vol. 102(C), pages 163-169.
    16. Lou, Rui & Wu, Shu-bin, 2011. "Products properties from fast pyrolysis of enzymatic/mild acidolysis lignin," Applied Energy, Elsevier, vol. 88(1), pages 316-322, January.
    17. Sun, Shao-Long & Wen, Jia-Long & Ma, Ming-Guo & Sun, Run-Cang, 2014. "Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments," Applied Energy, Elsevier, vol. 136(C), pages 519-526.
    18. Chen, Wei-Hsin & Ye, Song-Ching & Sheen, Herng-Kuang, 2012. "Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment," Applied Energy, Elsevier, vol. 93(C), pages 237-244.
    19. Lopes, Verônica dos Santos & Fischer, Janaína & Pinheiro, Tais Magalhães Abrantes & Cabral, Bruna Vieira & Cardoso, Vicelma Luiz & Coutinho Filho, Ubirajara, 2017. "Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse," Renewable Energy, Elsevier, vol. 109(C), pages 305-310.
    20. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:122:y:2014:i:c:p:189-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.