IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1275-d1332146.html
   My bibliography  Save this article

Investigation of Microwave Irradiation and Ethanol Pre-Treatment toward Bioproducts Fractionation from Oil Palm Empty Fruit Bunch

Author

Listed:
  • Ashvinder Singh Gill

    (Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
    Centre for Advanced and Sustainable Materials Research, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia)

  • Kam Huei Wong

    (Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
    Centre for Advanced and Sustainable Materials Research, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia)

  • Steven Lim

    (Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
    Centre for Advanced and Sustainable Materials Research, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia)

  • Yean Ling Pang

    (Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
    Centre for Advanced and Sustainable Materials Research, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia)

  • Lloyd Ling

    (Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia)

  • Sie Yon Lau

    (Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT250, Miri 98009, Sarawak, Malaysia)

Abstract

Lignocellulosic biomass (LCB), such as the oil palm empty fruit bunches (OPEFB), has emerged as one of the sustainable alternative renewable bioresources in retrieving valuable bioproducts, such as lignin, cellulose, and hemicellulose. The natural recalcitrance of LCB by the disarray of lignin is overcome through the combinative application of organosolv pre-treatment followed by microwave irradiation, which helps to break down LCB into its respective components. This physicochemical treatment process was conducted to evaluate the effect of ethanol solvent, microwave power, and microwave duration against delignification and the total sugar yield. The highest delignification rate was achieved, and the optimum level of total sugars was obtained, with the smallest amount of lignin left in the OPEFB sample at 0.57% and total sugars at 87.8 mg/L, respectively. This was observed for the OPEFB samples pre-treated with 55 vol% of ethanol subjected to a reaction time of 90 min and a microwave power of 520 W. Microwave irradiation functions were used to increase the temperature of the ethanol organic solvent, which in turn helped to break the protective lignin layer of OPEFB. On the other hand, the surface morphology supported this finding, where OPEFB samples pre-treated with 55 vol% of solvent subjected to similar microwave duration and power were observed to have higher opened and deepened surface structures. Consequently, higher thermal degradation can lead to more lignin being removed in order to expose and extract the total sugars. Therefore, it can be concluded that organosolv pre-treatment in combination with microwave irradiation can serve as a novel integrated method to optimize the total sugar yield synthesized from OPEFB.

Suggested Citation

  • Ashvinder Singh Gill & Kam Huei Wong & Steven Lim & Yean Ling Pang & Lloyd Ling & Sie Yon Lau, 2024. "Investigation of Microwave Irradiation and Ethanol Pre-Treatment toward Bioproducts Fractionation from Oil Palm Empty Fruit Bunch," Sustainability, MDPI, vol. 16(3), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1275-:d:1332146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moretti, Marcia Maria de Souza & Bocchini-Martins, Daniela Alonso & Nunes, Christiane da Costa Carreira & Villena, Maria Arévalo & Perrone, Olavo Micali & Silva, Roberto da & Boscolo, Maurício & Gomes, 2014. "Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis," Applied Energy, Elsevier, vol. 122(C), pages 189-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalyani, Dayanand Chandrahas & Zamanzadeh, Mirzaman & Müller, Gerdt & Horn, Svein J., 2017. "Biofuel production from birch wood by combining high solid loading simultaneous saccharification and fermentation and anaerobic digestion," Applied Energy, Elsevier, vol. 193(C), pages 210-219.
    2. Licari, A. & Monlau, F. & Solhy, A. & Buche, P. & Barakat, A., 2016. "Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: Glucose yield and energy efficiency," Energy, Elsevier, vol. 102(C), pages 335-342.
    3. Fia, A.Z. & Amorim, J., 2021. "Heating of biomass in microwave household oven - A numerical study," Energy, Elsevier, vol. 218(C).
    4. Paz-Cedeno, Fernando Roberto & Henares, Lucas Ragnini & Solorzano-Chavez, Eddyn Gabriel & Scontri, Mateus & Picheli, Flávio Pereira & Miranda Roldán, Ismael Ulises & Monti, Rubens & Conceição de Olive, 2021. "Evaluation of the effects of different chemical pretreatments in sugarcane bagasse on the response of enzymatic hydrolysis in batch systems subject to high mass loads," Renewable Energy, Elsevier, vol. 165(P1), pages 1-13.
    5. Roberto Paz Cedeno, Fernando & Belon de Siqueira, Breno & Gabriel Solorzano Chavez, Eddyn & Ulises Miranda Roldán, Ismael & Moreira Ropelato, Leonardo & Paul Martínez Galán, Julián & Masarin, Fernando, 2022. "Recovery of cellulose and lignin from Eucalyptus by-product and assessment of cellulose enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 193(C), pages 807-820.
    6. Amílcar Díaz-González & Magdalena Yeraldi Perez Luna & Erik Ramírez Morales & Sergio Saldaña-Trinidad & Lizeth Rojas Blanco & Sergio de la Cruz-Arreola & Bianca Yadira Pérez-Sariñana & José Billerman , 2022. "Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod," Energies, MDPI, vol. 15(10), pages 1-17, May.
    7. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1275-:d:1332146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.