IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp519-526.html
   My bibliography  Save this article

Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments

Author

Listed:
  • Sun, Shao-Long
  • Wen, Jia-Long
  • Ma, Ming-Guo
  • Sun, Run-Cang

Abstract

A combined system based on multiple steam explosion pretreatments (direct pretreatment and presoaked in 1% KOH aqueous solution followed by pretreatment under different conditions) and mild alkaline post-treatment has been developed to obtain digestible substrates from bamboo stems for bioethanol production. After the pretreatments, the enzymatic digestibility of cellulose increased to 17.1–32.2%, as compared to that of the untreated bamboo stems (5.8%). Direct pretreatment followed by alkaline treatment increased the enzymatic digestibility of cellulose to a maximum value of 73.8%. Alkaline treatment removed most of lignin and hemicelluloses, and incurred a higher crystalline index of the cellulose-rich residue obtained after a synergistic treatment as compared to the only steam-exploded substrates. The combination of direct pretreatment and alkaline treatment is an environmentally friendly and economical feasible method for the production of glucose and high-purity lignin, which will be further converted into high value-added products based on biorefinery.

Suggested Citation

  • Sun, Shao-Long & Wen, Jia-Long & Ma, Ming-Guo & Sun, Run-Cang, 2014. "Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments," Applied Energy, Elsevier, vol. 136(C), pages 519-526.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:519-526
    DOI: 10.1016/j.apenergy.2014.09.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914010162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.09.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monte, J.R. & Brienzo, M. & Milagres, A.M.F., 2011. "Utilization of pineapple stem juice to enhance enzyme-hydrolytic efficiency for sugarcane bagasse after an optimized pre-treatment with alkaline peroxide," Applied Energy, Elsevier, vol. 88(1), pages 403-408, January.
    2. Xu, Feng & Yu, Jianming & Tesso, Tesfaye & Dowell, Floyd & Wang, Donghai, 2013. "Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review," Applied Energy, Elsevier, vol. 104(C), pages 801-809.
    3. von Schenck, A. & Berglin, N. & Uusitalo, J., 2013. "Ethanol from Nordic wood raw material by simplified alkaline soda cooking pre-treatment," Applied Energy, Elsevier, vol. 102(C), pages 229-240.
    4. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production," Applied Energy, Elsevier, vol. 94(C), pages 129-140.
    5. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    6. Shafiei, Marzieh & Zilouei, Hamid & Zamani, Akram & Taherzadeh, Mohammad J. & Karimi, Keikhosro, 2013. "Enhancement of ethanol production from spruce wood chips by ionic liquid pretreatment," Applied Energy, Elsevier, vol. 102(C), pages 163-169.
    7. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    8. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    9. Mesa, Leyanis & González, Erenio & Ruiz, Encarnación & Romero, Inmaculada & Cara, Cristóbal & Felissia, Fernando & Castro, Eulogio, 2010. "Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design," Applied Energy, Elsevier, vol. 87(1), pages 109-114, January.
    10. Vancov, T. & McIntosh, S., 2012. "Mild acid pretreatment and enzyme saccharification of Sorghum bicolor straw," Applied Energy, Elsevier, vol. 92(C), pages 421-428.
    11. De Bari, Isabella & Liuzzi, Federico & Villone, Antonio & Braccio, Giacobbe, 2013. "Hydrolysis of concentrated suspensions of steam pretreated Arundo donax," Applied Energy, Elsevier, vol. 102(C), pages 179-189.
    12. Wen, Jia-Long & Sun, Shao-Long & Yuan, Tong-Qi & Xu, Feng & Sun, Run-Cang, 2014. "Understanding the chemical and structural transformations of lignin macromolecule during torrefaction," Applied Energy, Elsevier, vol. 121(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Shengdong & Huang, Wenjing & Huang, Wangxiang & Wang, Ke & Chen, Qiming & Wu, Yuanxin, 2015. "Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent," Applied Energy, Elsevier, vol. 154(C), pages 190-196.
    2. Tian-Ying Chen & Cheng-Ye Ma & Dou-Yong Min & Chuan-Fu Liu & Shao-Ni Sun & Xue-Fei Cao & Jia-Long Wen & Tong-Qi Yuan & Run-Cang Sun, 2020. "Aldehydes-Aided Lignin-First Deconstruction Strategy for Facilitating Lignin Monomers and Fermentable Glucose Production from Poplar Wood," Energies, MDPI, vol. 13(5), pages 1-15, March.
    3. Yuan, Zhaoyang & Li, Guodong & Wei, Weiqi & Wang, Jiarun & Fang, Zhen, 2020. "A comparison of different pre-extraction methods followed by steam pretreatment of bamboo to improve the enzymatic digestibility and ethanol production," Energy, Elsevier, vol. 196(C).
    4. Shaghaleh, Hiba & Xu, Xu & Liu, He & Wang, Shifa & Alhaj Hamoud, Yousef & Dong, Fuhao & Luo, Jinyue, 2019. "The effect of atmospheric pressure plasma pretreatment with various gases on the structural characteristics and chemical composition of wheat straw and applications to enzymatic hydrolysis," Energy, Elsevier, vol. 176(C), pages 195-210.
    5. Xu, Jikun & Hou, Huijie & Hu, Jingping & Liu, Bingchuan, 2018. "Coupling of hydrothermal and ionic liquid pretreatments for sequential biorefinery of Tamarix austromongolica," Applied Energy, Elsevier, vol. 229(C), pages 745-755.
    6. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    2. Favaro, Lorenzo & Basaglia, Marina & van Zyl, Willem H. & Casella, Sergio, 2013. "Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates," Applied Energy, Elsevier, vol. 102(C), pages 170-178.
    3. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    4. Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
    5. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    6. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    7. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    9. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    10. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    11. Rozina, & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nasir & Lu, Houfang, 2017. "Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach," Energy, Elsevier, vol. 141(C), pages 1810-1818.
    12. Andres Quintero, Julian & Ruth Felix, Erika & Eduardo Rincón, Luis & Crisspín, Marianella & Fernandez Baca, Jaime & Khwaja, Yasmeen & Cardona, Carlos Ariel, 2012. "Social and techno-economical analysis of biodiesel production in Peru," Energy Policy, Elsevier, vol. 43(C), pages 427-435.
    13. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    14. Borujeni, Nasim Espah & Karimi, Keikhosro & Denayer, Joeri F.M. & Kumar, Rajeev, 2022. "Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus," Energy, Elsevier, vol. 240(C).
    15. Kuo, Yen-Ting & Chen, Ju-Shiou & Yang, Tzu-Yueh & Wan, Hou-Peng, 2018. "Technical and Economic approach of bioethanol production from nanofiltration of biomass chemical hydrolysis solutions," Applied Energy, Elsevier, vol. 215(C), pages 426-436.
    16. Long, Jinxing & Shu, Riyang & Yuan, Zhengqiu & Wang, Tiejun & Xu, Ying & Zhang, Xinghua & Zhang, Qi & Ma, Longlong, 2015. "Efficient valorization of lignin depolymerization products in the present of NixMg1−xO," Applied Energy, Elsevier, vol. 157(C), pages 540-545.
    17. Moretti, Marcia Maria de Souza & Bocchini-Martins, Daniela Alonso & Nunes, Christiane da Costa Carreira & Villena, Maria Arévalo & Perrone, Olavo Micali & Silva, Roberto da & Boscolo, Maurício & Gomes, 2014. "Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis," Applied Energy, Elsevier, vol. 122(C), pages 189-195.
    18. Małgorzata Smuga-Kogut & Bartosz Walendzik & Katarzyna Lewicka-Rataj & Tomasz Kogut & Leszek Bychto & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2024. "Application of Proton Ionic Liquid in the Process of Obtaining Bioethanol from Hemp Stalks," Energies, MDPI, vol. 17(4), pages 1-15, February.
    19. Kumar, Manish & Gayen, Kalyan, 2011. "Developments in biobutanol production: New insights," Applied Energy, Elsevier, vol. 88(6), pages 1999-2012, June.
    20. Jiang, Ting & Wang, Tiejun & Ma, Longlong & Li, Yuping & Zhang, Qing & Zhang, Xinghua, 2012. "Investigation on the xylitol aqueous-phase reforming performance for pentane production over Pt/HZSM-5 and Ni/HZSM-5 catalysts," Applied Energy, Elsevier, vol. 90(1), pages 51-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:519-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.