IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp872-882.html
   My bibliography  Save this article

Solution-side effectiveness for a liquid-to-air membrane energy exchanger used as a dehumidifier/regenerator

Author

Listed:
  • Ghadiri Moghaddam, Davood
  • Besant, Robert W.
  • Simonson, Carey J.

Abstract

A liquid-to-air membrane energy exchanger (LAMEE) is an energy exchange device that transfers heat and moisture between air and salt solution streams through a semi-permeable membrane which is permeable for water vapor but impermeable for liquid water. LAMEEs have been used as a dehumidifier/regenerator in air-conditioning systems. In this paper, the solution-side effectiveness are presented for a small-scale single-panel LAMEE when it is used to regenerate the solution flow. The solution-side effectiveness are very important in regenerators where the main focus is on the salt solution, and the solution properties (i.e. solution outlet concentration) are important. The small-scale LAMEE is tested under air dehumidification and solution regeneration test conditions using a LiCl solution at one NTU (i.e. NTU=5) and three different Cr∗ values (Cr∗=2, 4 and 6). The results show that both the air-side and solution-side effectiveness of the LAMEE increase with Cr∗. The solution-side latent effectiveness is lower for the regenerator in comparison to the dehumidifier (e.g. 43% lower at Cr∗=6). Also, the numerical results for a small-scale LAMEE which were presented in literature are used in this paper to evaluate the solution-side effectiveness of the LAMEE under different test conditions. The numerical results show that the difference between the air-side and solution-side latent effectiveness are negligible. Therefore, the air-side latent effectiveness can be used to evaluate the solution-side latent effectiveness of LAMEEs.

Suggested Citation

  • Ghadiri Moghaddam, Davood & Besant, Robert W. & Simonson, Carey J., 2014. "Solution-side effectiveness for a liquid-to-air membrane energy exchanger used as a dehumidifier/regenerator," Applied Energy, Elsevier, vol. 113(C), pages 872-882.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:872-882
    DOI: 10.1016/j.apenergy.2013.08.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913006818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.08.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elsayed, M.M. & Gari, H.N. & Radhwan, A.M., 1993. "Effectiveness of heat and mass transfer in packed beds of liquid desiccant system," Renewable Energy, Elsevier, vol. 3(6), pages 661-668.
    2. Liu, X.H. & Jiang, Y. & Chang, X.M. & Yi, X.Q., 2007. "Experimental investigation of the heat and mass transfer between air and liquid desiccant in a cross-flow regenerator," Renewable Energy, Elsevier, vol. 32(10), pages 1623-1636.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    2. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    3. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2014. "Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV," Applied Energy, Elsevier, vol. 116(C), pages 134-148.
    4. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Thermodynamic optimization of a vacuum multi-effect membrane distillation system for liquid desiccant regeneration," Applied Energy, Elsevier, vol. 230(C), pages 960-973.
    5. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    6. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    7. Thu, K. & Mitra, S. & Saha, B.B. & Srinivasa Murthy, S., 2018. "Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems," Applied Energy, Elsevier, vol. 213(C), pages 31-44.
    8. Bai, Hongyu & Zhu, Jie & Chen, Xiangjie & Chu, Junze & Cui, Yuanlong & Yan, Yuying, 2020. "Steady-state performance evaluation and energy assessment of a complete membrane-based liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 258(C).
    9. Yon, Hao Ren & Cai, Wenjian & Wang, Youyi & Shen, Suping, 2018. "Performance investigation on a novel liquid desiccant regeneration system operating in vacuum condition," Applied Energy, Elsevier, vol. 211(C), pages 249-258.
    10. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
    11. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    12. Keniar, Khoudor & Ghali, Kamel & Ghaddar, Nesreen, 2015. "Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces," Applied Energy, Elsevier, vol. 138(C), pages 121-132.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Yimo & Yang, Hongxing & Lu, Lin & Qi, Ronghui, 2014. "A review of the mathematical models for predicting the heat and mass transfer process in the liquid desiccant dehumidifier," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 587-599.
    2. Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
    3. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    4. Elsayed, Moustafa M., 1994. "Analysis of air dehumidification using liquid desiccant system," Renewable Energy, Elsevier, vol. 4(5), pages 519-528.
    5. Shukla, Dhruvin L. & Modi, Kalpesh V., 2017. "A technical review on regeneration of liquid desiccant using solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 517-529.
    6. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    7. Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
    8. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    9. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    10. Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
    11. Zhan, Changfeng & Yin, Yonggao & Jin, Xing & Zhang, Xiaosong, 2018. "Experimental and simulated study on a novel compressed air drying system using a liquid desiccant cycle," Energy, Elsevier, vol. 162(C), pages 60-71.
    12. Xiong, Z.Q. & Dai, Y.J. & Wang, R.Z., 2010. "Development of a novel two-stage liquid desiccant dehumidification system assisted by CaCl2 solution using exergy analysis method," Applied Energy, Elsevier, vol. 87(5), pages 1495-1504, May.
    13. Islam, M.R. & Alan, S.W.L. & Chua, K.J., 2018. "Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling," Applied Energy, Elsevier, vol. 221(C), pages 334-347.
    14. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    15. She, Xiaohui & Yin, Yonggao & Zhang, Xiaosong, 2015. "Suggested solution concentration for an energy-efficient refrigeration system combined with condensation heat-driven liquid desiccant cycle," Renewable Energy, Elsevier, vol. 83(C), pages 553-564.
    16. Das, Rajat Subhra & Jain, Sanjeev, 2015. "Simulation of potential standalone liquid desiccant cooling cycles," Energy, Elsevier, vol. 81(C), pages 652-661.
    17. Kumar, Ritunesh & Dhar, P.L. & Jain, Sanjeev, 2011. "Development of new wire mesh packings for improving the performance of zero carryover spray tower," Energy, Elsevier, vol. 36(2), pages 1362-1374.
    18. Bassuoni, M.M., 2011. "An experimental study of structured packing dehumidifier/regenerator operating with liquid desiccant," Energy, Elsevier, vol. 36(5), pages 2628-2638.
    19. Qi, Ronghui & Lu, Lin, 2014. "Energy consumption and optimization of internally cooled/heated liquid desiccant air-conditioning system: A case study in Hong Kong," Energy, Elsevier, vol. 73(C), pages 801-808.
    20. Peng, Donggen & Luo, Danting, 2017. "Modeling and parametrical analysis on internally-heated liquid desiccant regenerator in liquid desiccant air conditioning," Energy, Elsevier, vol. 141(C), pages 461-471.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:872-882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.