IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v4y1994i5p519-528.html
   My bibliography  Save this article

Analysis of air dehumidification using liquid desiccant system

Author

Listed:
  • Elsayed, Moustafa M.

Abstract

Analyses are presented for air dehumidification using a liquid desiccant system. The expression for the coefficient of performance of the system is derived in terms of the operating and design parameters where the effect of each parameter can be directly identified. Also, the expression for the maximum coefficient of performance expected from the system for a given operating condition is deduced. The operating ranges of flow rates of air and solution are examined. A methodology is presented to determine the optimum air temperature for the reconcentration of liquid desiccant, and the optimum flow rates of air and solution in the system. In addition, a parametric study is carried out to find out the factors that contribute to the improvements of the coefficient of performance.

Suggested Citation

  • Elsayed, Moustafa M., 1994. "Analysis of air dehumidification using liquid desiccant system," Renewable Energy, Elsevier, vol. 4(5), pages 519-528.
  • Handle: RePEc:eee:renene:v:4:y:1994:i:5:p:519-528
    DOI: 10.1016/0960-1481(94)90214-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0960148194902143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(94)90214-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Radhwan, A.M. & Gari, H.N. & Elsayed, M.M., 1993. "Parametric study of a packed bed dehumidifier/regenerator using CaCl2 liquid desiccant," Renewable Energy, Elsevier, vol. 3(1), pages 49-60.
    2. Elsayed, M.M. & Gari, H.N. & Radhwan, A.M., 1993. "Effectiveness of heat and mass transfer in packed beds of liquid desiccant system," Renewable Energy, Elsevier, vol. 3(6), pages 661-668.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahamah, A. & Elsayed, M.M. & Al-Najem, N.M., 1998. "A numerical solution for cooling and dehumidification of air by a falling desiccant film in parallel flow," Renewable Energy, Elsevier, vol. 13(3), pages 305-322.
    2. Liu, X.H. & Qu, K.Y. & Jiang, Y., 2006. "Empirical correlations to predict the performance of the dehumidifier using liquid desiccant in heat and mass transfer," Renewable Energy, Elsevier, vol. 31(10), pages 1627-1639.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Ritunesh & Dhar, P.L. & Jain, Sanjeev, 2011. "Development of new wire mesh packings for improving the performance of zero carryover spray tower," Energy, Elsevier, vol. 36(2), pages 1362-1374.
    2. Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
    3. Rahamah, A. & Elsayed, M.M. & Al-Najem, N.M., 1998. "A numerical solution for cooling and dehumidification of air by a falling desiccant film in parallel flow," Renewable Energy, Elsevier, vol. 13(3), pages 305-322.
    4. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    5. Shukla, Dhruvin L. & Modi, Kalpesh V., 2017. "A technical review on regeneration of liquid desiccant using solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 517-529.
    6. Audah, N. & Ghaddar, N. & Ghali, K., 2011. "Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs," Applied Energy, Elsevier, vol. 88(11), pages 3726-3736.
    7. Ali, Ameer & Ishaque, Kashif & Lashin, Aref & Al Arifi, Nassir, 2017. "Modeling of a liquid desiccant dehumidification system for close type greenhouse cultivation," Energy, Elsevier, vol. 118(C), pages 578-589.
    8. Kabeel, A.E., 2010. "Dehumidification and humidification process of desiccant solution by air injection," Energy, Elsevier, vol. 35(12), pages 5192-5201.
    9. Mei, L. & Dai, Y.J., 2008. "A technical review on use of liquid-desiccant dehumidification for air-conditioning application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 662-689, April.
    10. Enteria, Napoleon & Yoshino, Hiroshi & Mochida, Akashi, 2013. "Review of the advances in open-cycle absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 265-289.
    11. Luo, Yimo & Yang, Hongxing & Lu, Lin & Qi, Ronghui, 2014. "A review of the mathematical models for predicting the heat and mass transfer process in the liquid desiccant dehumidifier," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 587-599.
    12. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    13. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    14. Ghadiri Moghaddam, Davood & Besant, Robert W. & Simonson, Carey J., 2014. "Solution-side effectiveness for a liquid-to-air membrane energy exchanger used as a dehumidifier/regenerator," Applied Energy, Elsevier, vol. 113(C), pages 872-882.
    15. Abdel-Salam, Mohamed R.H. & Ge, Gaoming & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 700-728.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:4:y:1994:i:5:p:519-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.