IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p2628-2638.html
   My bibliography  Save this article

An experimental study of structured packing dehumidifier/regenerator operating with liquid desiccant

Author

Listed:
  • Bassuoni, M.M.

Abstract

The present work presents an experimental investigation on the performance of the structured packing cross flow desiccant dehumidification system (DDS). This system is referred as DDS; its heart is the dehumidifier/regenerator. It is used to meet a latent heat load by air dehumidification. Calcium chloride (CaCl2) solution is used as the working desiccant material in this system. The structured packing has a density (specific surface area) of 390m2/m3, corrugation angle of 60° and void fraction of 0.88. The effect of relevant parameters such as air flow rate, desiccant solution flow rate, desiccant solution temperature and concentration and packing thickness on the performance of the system is studied. The performance of the system is evaluated using the mass transfer coefficient, moisture removal rate (MMR), effectiveness and the coefficient of performance (COP). The remarkable increase of mass transfer coefficient and MRR for both deh/reg is observed by increasing both air and solution flow rates. Eventually, the payback period (PP) of the DDS is 11 months with annual running cost savings (ΔCRC) of about 31.24% compared with vapor compression system (VCS) dehumidification. The overall environmental impacts of DDS are nearly 0.63 of VCS. This may emphasize the need of incorporating a desiccant system along with air conditioning applications.

Suggested Citation

  • Bassuoni, M.M., 2011. "An experimental study of structured packing dehumidifier/regenerator operating with liquid desiccant," Energy, Elsevier, vol. 36(5), pages 2628-2638.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2628-2638
    DOI: 10.1016/j.energy.2011.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421100082X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdul-Wahab, S.A. & Zurigat, Y.H. & Abu-Arabi, M.K., 2004. "Predictions of moisture removal rate and dehumidification effectiveness for structured liquid desiccant air dehumidifier," Energy, Elsevier, vol. 29(1), pages 19-34.
    2. Liu, X.H. & Jiang, Y. & Chang, X.M. & Yi, X.Q., 2007. "Experimental investigation of the heat and mass transfer between air and liquid desiccant in a cross-flow regenerator," Renewable Energy, Elsevier, vol. 32(10), pages 1623-1636.
    3. Gad, H.E & Hamed, A.M & El-Sharkawy, I.I, 2001. "Application of a solar desiccant/collector system for water recovery from atmospheric air," Renewable Energy, Elsevier, vol. 22(4), pages 541-556.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Lun & Wei, Hongyang & Zhang, Xiaosong, 2017. "Theoretical analysis of heat and mass transfer characteristics of a counter-flow packing tower and liquid desiccant dehumidification systems based on entransy theory," Energy, Elsevier, vol. 141(C), pages 661-672.
    2. Tao Wen & Lin Lu & Hongxing Yang & Yimo Luo, 2018. "Investigation on the Regeneration and Corrosion Characteristics of an Anodized Aluminum Plate Regenerator," Energies, MDPI, vol. 11(5), pages 1-15, May.
    3. Xie, Ying & Zhang, Tao & Liu, Xiaohua, 2016. "Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system," Energy, Elsevier, vol. 115(P1), pages 446-457.
    4. Misha, S. & Mat, S. & Ruslan, M.H. & Sopian, K., 2012. "Review of solid/liquid desiccant in the drying applications and its regeneration methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4686-4707.
    5. Jradi, M. & Riffat, S., 2014. "Experimental investigation of a biomass-fuelled micro-scale tri-generation system with an organic Rankine cycle and liquid desiccant cooling unit," Energy, Elsevier, vol. 71(C), pages 80-93.
    6. Luo, Yimo & Wang, Meng & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Experimental study of the film thickness in the dehumidifier of a liquid desiccant air conditioning system," Energy, Elsevier, vol. 84(C), pages 239-246.
    7. Yang, C.M. & Chen, C.C. & Chen, S.L., 2013. "Energy-efficient air conditioning system with combination of radiant cooling and periodic total heat exchanger," Energy, Elsevier, vol. 59(C), pages 467-477.
    8. Ramzy, Ahmed K. & Kadoli, Ravikiran & T.P., Ashok Babu, 2013. "Experimental and theoretical investigations on the cyclic operation of TSA cycle for air dehumidification using packed beds of silica gel particles," Energy, Elsevier, vol. 56(C), pages 8-24.
    9. Yang, Zili & Zhang, Kaisheng & Lian, Zhiwei & Zhang, Huibo, 2016. "Sensitivity and stability analysis on the performance of ultrasonic atomization liquid desiccant dehumidification system," Energy, Elsevier, vol. 112(C), pages 1169-1183.
    10. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    11. Murugan, S. & Horák, Bohumil, 2016. "Tri and polygeneration systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1032-1051.
    12. Enteria, Napoleon & Yoshino, Hiroshi & Mochida, Akashi, 2013. "Review of the advances in open-cycle absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 265-289.
    13. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    14. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    15. Song, Xia & Zhang, Lun & Zhang, Xiaosong, 2018. "NTUm-based optimization of heat or heat pump driven liquid desiccant dehumidification systems regenerated by fresh air or return air," Energy, Elsevier, vol. 158(C), pages 269-280.
    16. Sunil Nain & Sanjay Kajal & Anuradha Parinam, 2020. "Thermal performance of desiccant-based solar air-conditioning system with silica gel coating," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 281-296, January.
    17. Song, Xia & Zhang, Lun & Zhang, Xiaosong, 2019. "Analysis of the temperatures of heating and cooling sources and the air states in liquid desiccant dehumidification systems regenerated by return air," Energy, Elsevier, vol. 168(C), pages 651-661.
    18. Peng, Donggen & Luo, Danting, 2017. "Modeling and parametrical analysis on internally-heated liquid desiccant regenerator in liquid desiccant air conditioning," Energy, Elsevier, vol. 141(C), pages 461-471.
    19. Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
    20. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    21. De Antonellis, Stefano & Joppolo, Cesare Maria & Molinaroli, Luca & Pasini, Alberto, 2012. "Simulation and energy efficiency analysis of desiccant wheel systems for drying processes," Energy, Elsevier, vol. 37(1), pages 336-345.
    22. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    23. Shih-Cheng Hu & Angus Shiue & Yi-Shiung Chiu & Archy Wang & Jacky Chen, 2016. "Simplified Heat and Mass Transfer Model for Cross-Flow and Countercurrent Flow Packed Bed Tower Dehumidifiers with a Liquid Desiccant System," Sustainability, MDPI, vol. 8(12), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    2. Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
    3. Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
    4. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    5. Yang, Zili & Lian, Zhiwei & Li, Xi & Zhang, Kaisheng, 2015. "Concept of dehumidification perfectness and its potential applications," Energy, Elsevier, vol. 91(C), pages 176-191.
    6. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    7. Zendehboudi, Alireza & Tatar, Afshin & Li, Xianting, 2017. "A comparative study and prediction of the liquid desiccant dehumidifiers using intelligent models," Renewable Energy, Elsevier, vol. 114(PB), pages 1023-1035.
    8. Dai, Yuze & Liu, Feng & Sui, Jun & Wang, Dandan & Han, Wei & Jin, Hongguang, 2020. "Hybrid liquid desiccant air-conditioning system combined with marine aerosol removal driven by low-temperature heat source," Applied Energy, Elsevier, vol. 275(C).
    9. El-Ghonemy, A.M.K., 2012. "Fresh water production from/by atmospheric air for arid regions, using solar energy: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6384-6422.
    10. William, G.E. & Mohamed, M.H. & Fatouh, M., 2015. "Desiccant system for water production from humid air using solar energy," Energy, Elsevier, vol. 90(P2), pages 1707-1720.
    11. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    12. Xie, Ying & Zhang, Tao & Liu, Xiaohua, 2016. "Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system," Energy, Elsevier, vol. 115(P1), pages 446-457.
    13. Luo, Yimo & Wang, Meng & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Experimental study of the film thickness in the dehumidifier of a liquid desiccant air conditioning system," Energy, Elsevier, vol. 84(C), pages 239-246.
    14. Song, Xia & Zhang, Lun & Zhang, Xiaosong, 2019. "Analysis of the temperatures of heating and cooling sources and the air states in liquid desiccant dehumidification systems regenerated by return air," Energy, Elsevier, vol. 168(C), pages 651-661.
    15. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    16. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    17. Husam S. Al-Duais & Muhammad Azzam Ismail & Zakaria Alcheikh Mahmoud Awad & Karam M. Al-Obaidi, 2022. "Performance Evaluation of Solar-Powered Atmospheric Water Harvesting Using Different Glazing Materials in the Tropical Built Environment: An Experimental Study," Energies, MDPI, vol. 15(9), pages 1-19, April.
    18. Zhan, Changfeng & Yin, Yonggao & Jin, Xing & Zhang, Xiaosong, 2018. "Experimental and simulated study on a novel compressed air drying system using a liquid desiccant cycle," Energy, Elsevier, vol. 162(C), pages 60-71.
    19. Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.
    20. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2628-2638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.