IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v211y2018icp249-258.html
   My bibliography  Save this article

Performance investigation on a novel liquid desiccant regeneration system operating in vacuum condition

Author

Listed:
  • Yon, Hao Ren
  • Cai, Wenjian
  • Wang, Youyi
  • Shen, Suping

Abstract

Liquid Desiccant Dehumidification Systems (LDDS) have been gaining attention due to its great energy saving potential in buildings. The desiccant regeneration system in LDDS plays a vital role in the system as the major energy consumed is due to the heat energy supplied to regain the concentration of the desiccant solution. The high regeneration temperature prohibits the potential use of low-grade or renewable energy as the heat source in the desiccant regeneration system. Therefore, a desiccant regeneration system operating in vacuum condition was proposed in this work. A novel Absorption-based Liquid Desiccant Regeneration (ALDR) system was developed and studied to validate this approach. A performance prediction model was also developed to predict the regeneration performance of the ALDR system. The model predicted values and the experimental values agreed well with each other with average deviation less than 5.90%. The operating parameters in the proposed ALDR system were also compared with the conventional packed-bed desiccant regeneration system available in literature. The regeneration temperature in LDDS was found to be significantly reduced to around 20–35 °C with the operating vacuum pressure between 1000 Pa and 2000 Pa when regenerating Lithium Bromide solution of 36% mass fraction. This study validated the feasibility of the ALDR system in reducing the regeneration temperature of the desiccant regeneration system. The results also showed that the proposed ALDR system was able to reduce the power consumption by 40.66% compared to the conventional packed-type regenerator from literature.

Suggested Citation

  • Yon, Hao Ren & Cai, Wenjian & Wang, Youyi & Shen, Suping, 2018. "Performance investigation on a novel liquid desiccant regeneration system operating in vacuum condition," Applied Energy, Elsevier, vol. 211(C), pages 249-258.
  • Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:249-258
    DOI: 10.1016/j.apenergy.2017.10.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917315714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Zili & Zhang, Kaisheng & Hwang, Yunho & Lian, Zhiwei, 2016. "Performance investigation on the ultrasonic atomization liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 171(C), pages 12-25.
    2. Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Ding, Xudong, 2013. "A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 111(C), pages 449-455.
    3. Yao, Ye & Zhang, Weijiang & Liu, Shiqing, 2009. "Feasibility study on power ultrasound for regeneration of silica gel--A potential desiccant used in air-conditioning system," Applied Energy, Elsevier, vol. 86(11), pages 2394-2400, November.
    4. Xiong, Z.Q. & Dai, Y.J. & Wang, R.Z., 2010. "Development of a novel two-stage liquid desiccant dehumidification system assisted by CaCl2 solution using exergy analysis method," Applied Energy, Elsevier, vol. 87(5), pages 1495-1504, May.
    5. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2014. "Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV," Applied Energy, Elsevier, vol. 116(C), pages 134-148.
    6. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    7. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    8. Yang, Zili & Lian, Zhiwei & Li, Xi & Zhang, Kaisheng, 2015. "Concept of dehumidification perfectness and its potential applications," Energy, Elsevier, vol. 91(C), pages 176-191.
    9. Liu, X.H. & Jiang, Y. & Chang, X.M. & Yi, X.Q., 2007. "Experimental investigation of the heat and mass transfer between air and liquid desiccant in a cross-flow regenerator," Renewable Energy, Elsevier, vol. 32(10), pages 1623-1636.
    10. Ghadiri Moghaddam, Davood & Besant, Robert W. & Simonson, Carey J., 2014. "Solution-side effectiveness for a liquid-to-air membrane energy exchanger used as a dehumidifier/regenerator," Applied Energy, Elsevier, vol. 113(C), pages 872-882.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    2. Guo, Yi & Al-Jubainawi, Ali & Peng, Xueyuan, 2019. "Modelling and the feasibility study of a hybrid electrodialysis and thermal regeneration method for LiCl liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 239(C), pages 1014-1036.
    3. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    4. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Thermodynamic optimization of a vacuum multi-effect membrane distillation system for liquid desiccant regeneration," Applied Energy, Elsevier, vol. 230(C), pages 960-973.
    5. Niu, Xiaofeng & Ke, Qing & Wang, Zhaohua & Zhou, Junming & Dong, Honglin & Mahian, Omid, 2023. "Study on the regeneration process and overall performance of a microencapsulated phase change material slurry dehumidification system," Renewable Energy, Elsevier, vol. 216(C).
    6. Guan, Bowen & Liu, Xiaohua & Zhang, Tao, 2020. "Analytical solutions for the optimal cooling and heating source temperatures in liquid desiccant air-conditioning system based on exergy analysis," Energy, Elsevier, vol. 203(C).
    7. Zhan, Changfeng & Yin, Yonggao & Guo, Xiaoshuang & Jin, Xing & Zhang, Xiaosong, 2018. "Investigation on drying performance and alternative analysis of different liquid desiccants in compressed air drying system," Energy, Elsevier, vol. 165(PB), pages 1-9.
    8. Cola, Fabrizio & Hey, Jonathan & Romagnoli, Alessandro, 2018. "Characterization of the droplet formation phase for the H2OLiBr absorber: An analytical and experimental analysis," Applied Energy, Elsevier, vol. 222(C), pages 885-897.
    9. Zhan, Changfeng & Yin, Yonggao & Jin, Xing & Zhang, Xiaosong, 2018. "Experimental and simulated study on a novel compressed air drying system using a liquid desiccant cycle," Energy, Elsevier, vol. 162(C), pages 60-71.
    10. Liu, Wei & Gong, Yanfeng & Niu, Xiaofeng & Shen, Junjie & Kosonen, Risto, 2019. "Dynamic modeling of liquid-desiccant regenerator based on a state–space method," Applied Energy, Elsevier, vol. 240(C), pages 744-753.
    11. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Thermodynamic optimization of a vacuum multi-effect membrane distillation system for liquid desiccant regeneration," Applied Energy, Elsevier, vol. 230(C), pages 960-973.
    2. Yang, Zili & Zhang, Kaisheng & Hwang, Yunho & Lian, Zhiwei, 2016. "Performance investigation on the ultrasonic atomization liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 171(C), pages 12-25.
    3. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    4. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    5. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    6. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    7. Keniar, Khoudor & Ghali, Kamel & Ghaddar, Nesreen, 2015. "Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces," Applied Energy, Elsevier, vol. 138(C), pages 121-132.
    8. Abdel-Salam, Mohamed R.H. & Ge, Gaoming & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 700-728.
    9. Li, Xian & Liu, Shuai & Tan, Kok Kiong & Wang, Qing-Guo & Cai, Wen-Jian & Xie, Lihua, 2016. "Dynamic modeling of a liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 180(C), pages 435-445.
    10. Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.
    11. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    12. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    13. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    14. Thu, K. & Mitra, S. & Saha, B.B. & Srinivasa Murthy, S., 2018. "Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems," Applied Energy, Elsevier, vol. 213(C), pages 31-44.
    15. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    16. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    17. Das, Rajat Subhra & Jain, Sanjeev, 2015. "Performance characteristics of cross-flow membrane contactors for liquid desiccant systems," Applied Energy, Elsevier, vol. 141(C), pages 1-11.
    18. Mohammad, Abdulrahman Th. & Mat, Sohif Bin & Sopian, K. & Al-abidi, Abduljalil A., 2016. "Review: Survey of the control strategy of liquid desiccant systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 250-258.
    19. Shen, Suping & Cai, Wenjian & Wang, Xinli & Wu, Qiong & Yon, Haoren, 2016. "Hybrid model for heat recovery heat pipe system in Liquid Desiccant Dehumidification System," Applied Energy, Elsevier, vol. 182(C), pages 383-393.
    20. Fan, Hongming & Shao, Shuangquan & Tian, Changqing, 2014. "Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control," Applied Energy, Elsevier, vol. 113(C), pages 883-890.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:249-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.