IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v213y2018icp31-44.html
   My bibliography  Save this article

Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems

Author

Listed:
  • Thu, K.
  • Mitra, S.
  • Saha, B.B.
  • Srinivasa Murthy, S.

Abstract

Air conditioning approach using two separate units for latent heat and sensible heat removal opens up opportunities and challenges for improved efficiency. In such systems, the dehumidification device removes moisture from the air stream usually without condensation whilst the remaining sensible load is handled by a conventional mechanical vapour compression (MVC) machine. This article investigates the thermodynamic feasibility of such hybrid dehumidifier + MVC systems as potential replacements for the conventional MVC devices. We shed some light on the minimum efficacy requirement in terms of COP or simply the breakeven COP for the coupled dehumidification system. Thermodynamic investigation has been conducted using classical Carnot, endoreversible technique and the experimental approaches. The breakeven COPs for a dehumidifier + MVC system where the latter using HFC-R14a, HFC-R32 and HFO-R1234yf as refrigerants have been investigated at assorted outdoor air ratios. Performance enhancement in terms of COP and the cooling capacity at elevated temperatures for sensible cooling are accounted for. It is observed that the breakeven COP for the dehumidification system ranges from 9 to 17 (Carnot approach) and 4.3 to 6.8 (Ideal cycle) in order to be realistically competitive with the current efficiency offered by a MVC system for the both dehumidification and sensible cooling. The life cycle cost (LCC) analysis is further performed to assess the fresh air-handling systems using a conventional MVC system and a dehumidifier + MVC system. The unprecedented improvement in the performance of the MVC systems further raises the ceiling for the breakeven COP of the dehumidification systems.

Suggested Citation

  • Thu, K. & Mitra, S. & Saha, B.B. & Srinivasa Murthy, S., 2018. "Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems," Applied Energy, Elsevier, vol. 213(C), pages 31-44.
  • Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:31-44
    DOI: 10.1016/j.apenergy.2018.01.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918300254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeffrey Mo, 2017. "Résolution collaborative de problèmes," PISA à la loupe 78, OECD Publishing.
    2. Labban, Omar & Chen, Tianyi & Ghoniem, Ahmed F. & Lienhard, John H. & Norford, Leslie K., 2017. "Next-generation HVAC: Prospects for and limitations of desiccant and membrane-based dehumidification and cooling," Applied Energy, Elsevier, vol. 200(C), pages 330-346.
    3. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2014. "Performance analysis of a two-stage desiccant cooling system," Applied Energy, Elsevier, vol. 113(C), pages 1562-1574.
    4. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    5. Luo, Yimo & Yang, Hongxing & Lu, Lin, 2014. "Dynamic and microscopic simulation of the counter-current flow in a liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 136(C), pages 1018-1025.
    6. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    7. Ghadiri Moghaddam, Davood & Besant, Robert W. & Simonson, Carey J., 2014. "Solution-side effectiveness for a liquid-to-air membrane energy exchanger used as a dehumidifier/regenerator," Applied Energy, Elsevier, vol. 113(C), pages 872-882.
    8. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2014. "Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV," Applied Energy, Elsevier, vol. 116(C), pages 134-148.
    9. Park, Ki-Jung & Seo, Taebeom & Jung, Dongsoo, 2007. "Performance of alternative refrigerants for residential air-conditioning applications," Applied Energy, Elsevier, vol. 84(10), pages 985-991, October.
    10. Nunes, T.K. & Vargas, J.V.C. & Ordonez, J.C. & Shah, D. & Martinho, L.C.S., 2015. "Modeling, simulation and optimization of a vapor compression refrigeration system dynamic and steady state response," Applied Energy, Elsevier, vol. 158(C), pages 540-555.
    11. Das, Rajat Subhra & Jain, Sanjeev, 2015. "Performance characteristics of cross-flow membrane contactors for liquid desiccant systems," Applied Energy, Elsevier, vol. 141(C), pages 1-11.
    12. Bergero, Stefano & Chiari, Anna, 2011. "On the performances of a hybrid air-conditioning system in different climatic conditions," Energy, Elsevier, vol. 36(8), pages 5261-5273.
    13. Pang, S.C. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A., 2013. "Liquid absorption and solid adsorption system for household, industrial and automobile applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 836-847.
    14. Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Ghani, Saud Abdul, 2011. "A review of sustainable cooling technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3112-3120, August.
    15. Angrisani, Giovanni & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2012. "Experimental analysis on the dehumidification and thermal performance of a desiccant wheel," Applied Energy, Elsevier, vol. 92(C), pages 563-572.
    16. Bui, Duc Thuan & Kum Ja, M. & Gordon, Jeffrey M. & Ng, Kim Choon & Chua, Kian Jon, 2017. "A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification," Energy, Elsevier, vol. 132(C), pages 106-115.
    17. Li, Xian & Liu, Shuai & Tan, Kok Kiong & Wang, Qing-Guo & Cai, Wen-Jian & Xie, Lihua, 2016. "Dynamic modeling of a liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 180(C), pages 435-445.
    18. O’Connor, Dominic & Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A novel design of a desiccant rotary wheel for passive ventilation applications," Applied Energy, Elsevier, vol. 179(C), pages 99-109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matsui, Kohei & Lin, Jie & Thu, Kyaw & Miyazaki, Takahiko, 2022. "On the performance improvement of an inverted Brayton Cycle using a regenerative heat and mass exchanger," Energy, Elsevier, vol. 249(C).
    2. Liang, Jyun-De & Huang, Bo-Hao & Chiang, Yuan-Ching & Chen, Sih-Li, 2020. "Experimental investigation of a liquid desiccant dehumidification system integrated with shallow geothermal energy," Energy, Elsevier, vol. 191(C).
    3. Islam, M.R. & Alan, S.W.L. & Chua, K.J., 2018. "Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling," Applied Energy, Elsevier, vol. 221(C), pages 334-347.
    4. Qing Cheng & Han Wang & Lin Zhu & Yao Chen, 2023. "A current efficiency model coupled with desiccant molecular weight for electrodialysis regeneration in liquid desiccant air-conditioning systems," Energy & Environment, , vol. 34(4), pages 909-926, June.
    5. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    2. Islam, M.R. & Alan, S.W.L. & Chua, K.J., 2018. "Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling," Applied Energy, Elsevier, vol. 221(C), pages 334-347.
    3. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    4. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    5. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    6. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Min, Yunran & Chen, Yi & Shi, Wenchao & Yang, Hongxing, 2021. "Applicability of indirect evaporative cooler for energy recovery in hot and humid areas: Comparison with heat recovery wheel," Applied Energy, Elsevier, vol. 287(C).
    8. Chua, K.J. & Chou, S.K. & Islam, M.R., 2018. "On the experimental study of a hybrid dehumidifier comprising membrane and composite desiccants," Applied Energy, Elsevier, vol. 220(C), pages 934-943.
    9. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2014. "Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV," Applied Energy, Elsevier, vol. 116(C), pages 134-148.
    10. Rima Aridi & Jalal Faraj & Samer Ali & Mostafa Gad El-Rab & Thierry Lemenand & Mahmoud Khaled, 2021. "Energy Recovery in Air Conditioning Systems: Comprehensive Review, Classifications, Critical Analysis, and Potential Recommendations," Energies, MDPI, vol. 14(18), pages 1-31, September.
    11. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    12. Liu, Wei & Gong, Yanfeng & Niu, Xiaofeng & Shen, Junjie & Kosonen, Risto, 2019. "Dynamic modeling of liquid-desiccant regenerator based on a state–space method," Applied Energy, Elsevier, vol. 240(C), pages 744-753.
    13. Yon, Hao Ren & Cai, Wenjian & Wang, Youyi & Shen, Suping, 2018. "Performance investigation on a novel liquid desiccant regeneration system operating in vacuum condition," Applied Energy, Elsevier, vol. 211(C), pages 249-258.
    14. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Thermodynamic optimization of a vacuum multi-effect membrane distillation system for liquid desiccant regeneration," Applied Energy, Elsevier, vol. 230(C), pages 960-973.
    15. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
    16. Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
    17. Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.
    18. Fix, Andrew J. & Oh, Jinwoo & Braun, James E. & Warsinger, David M., 2024. "Dual-module humidity pump for efficient air dehumidification: Demonstration and performance limitations," Applied Energy, Elsevier, vol. 360(C).
    19. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:213:y:2018:i:c:p:31-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.