IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v105y2013icp271-281.html
   My bibliography  Save this article

A two-stage combustion system for burning lean gasoline mixtures in a stationary spark ignited engine

Author

Listed:
  • Szwaja, Stanislaw
  • Jamrozik, Arkadiusz
  • Tutak, Wojciech

Abstract

The paper mainly focuses on applying the two-stage combustion system with a pre-chamber into the stationary internal combustion spark ignited engine. It especially concentrates on applying throttle less operation at partial load and reduction of the NOx emission. Considerations conducted in the paper are based on the in-cylinder combustion progress analysis. Additionally, analysis of tailpipe toxic emission, with particular focus on the NOx formation in the engine equipped with the pre-chamber, is also performed. The paper presents both results of 3-D combustion modeling in the SI engine and results conducted on a test SI engine. The 3-D modeling was performed in the KIVA-3V code. Next, results from modeling were compared with results obtained from tests. Finally, satisfactory good consistency between modeled and experimental courses of both pressure, temperature and NOx were obtained. Thus, the engine model with the proposed two-stage combustion system properly simulates engine working conditions on the test bed. Results from both analyses confirmed that the two-stage combustion system significantly shortens combustion duration of an ultra lean gasoline–air mixture and contributes to reduction in NOx.

Suggested Citation

  • Szwaja, Stanislaw & Jamrozik, Arkadiusz & Tutak, Wojciech, 2013. "A two-stage combustion system for burning lean gasoline mixtures in a stationary spark ignited engine," Applied Energy, Elsevier, vol. 105(C), pages 271-281.
  • Handle: RePEc:eee:appene:v:105:y:2013:i:c:p:271-281
    DOI: 10.1016/j.apenergy.2012.12.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191300007X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.12.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    2. Barelli, L. & Barluzzi, E. & Bidini, G., 2011. "Modeling of a 1Â MW cogenerative internal combustion engine for diagnostic scopes," Applied Energy, Elsevier, vol. 88(8), pages 2702-2712, August.
    3. Aithal, S.M., 2010. "Modeling of NOx formation in diesel engines using finite-rate chemical kinetics," Applied Energy, Elsevier, vol. 87(7), pages 2256-2265, July.
    4. Mohamed Ismail, Harun & Ng, Hoon Kiat & Gan, Suyin, 2012. "Evaluation of non-premixed combustion and fuel spray models for in-cylinder diesel engine simulation," Applied Energy, Elsevier, vol. 90(1), pages 271-279.
    5. Roy, Murari Mohon & Parvez, Riaz & Sarker, Rabiul Islam, 2011. "Exhaust odor and smoke reduction of stationary DI diesel engines to acceptable level by water-scrubbing and air-dilution system," Applied Energy, Elsevier, vol. 88(7), pages 2391-2399, July.
    6. Hazar, Hanbey, 2010. "Cotton methyl ester usage in a diesel engine equipped with insulated combustion chamber," Applied Energy, Elsevier, vol. 87(1), pages 134-140, January.
    7. Ceviz, M.A. & Yüksel, F., 2006. "Cyclic variations on LPG and gasoline-fuelled lean burn SI engine," Renewable Energy, Elsevier, vol. 31(12), pages 1950-1960.
    8. Labecki, L. & Cairns, A. & Xia, J. & Megaritis, A. & Zhao, H. & Ganippa, L.C., 2012. "Combustion and emission of rapeseed oil blends in diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 139-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    2. Michał Głogowski & Przemysław Kubiak & Szymon Szufa & Piotr Piersa & Łukasz Adrian & Mateusz Krukowski, 2021. "The Use of the Fourier Series to Analyze the Shaping of Thermodynamic Processes in Heat Engines," Energies, MDPI, vol. 14(8), pages 1-23, April.
    3. Zhao, Zhenfeng & Cui, Huasheng, 2022. "Numerical investigation on combustion processes of an aircraft piston engine fueled with aviation kerosene and gasoline," Energy, Elsevier, vol. 239(PD).
    4. Lina Xu & Gang Li & Mingfa Yao & Zunqing Zheng & Hu Wang, 2022. "Numerical Investigation on the Jet Characteristics and Combustion Process of an Active Prechamber Combustion System Fueled with Natural Gas," Energies, MDPI, vol. 15(15), pages 1-16, July.
    5. Akram, M. Zuhaib, 2021. "Study of hydrogen impact on lean flammability limit and burning characteristics of a kerosene surrogate," Energy, Elsevier, vol. 231(C).
    6. Su, Teng & Ji, Changwei & Wang, Shuofeng & Shi, Lei & Yang, Jinxin & Cong, Xiaoyu, 2017. "Investigation on performance of a hydrogen-gasoline rotary engine at part load and lean conditions," Applied Energy, Elsevier, vol. 205(C), pages 683-691.
    7. Alagumalai, Avinash, 2014. "Internal combustion engines: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 561-571.
    8. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    9. Esfahanian, Vahid & Salahi, Mohammad Mahdi & Gharehghani, Ayatallah & Mirsalim, Mostafa, 2017. "Extending the lean operating range of a premixed charged compression ignition natural gas engine using a pre-chamber," Energy, Elsevier, vol. 119(C), pages 1181-1194.
    10. Ayat Gharehghani & Alireza Kakoee & Amin Mahmoudzadeh Andwari & Thanos Megaritis & Apostolos Pesyridis, 2021. "Numerical Investigation of an RCCI Engine Fueled with Natural Gas/Dimethyl-Ether in Various Injection Strategies," Energies, MDPI, vol. 14(6), pages 1-25, March.
    11. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    12. Zhang, R.C. & Fan, W.J. & Shi, Q. & Tan, W.L., 2014. "Combustion and emissions characteristics of dual-channel double-vortex combustion for gas turbine engines," Applied Energy, Elsevier, vol. 130(C), pages 314-325.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    2. Zhao, Junfeng & Wang, Junmin, 2013. "Control-oriented multi-phase combustion model for biodiesel fueled engines," Applied Energy, Elsevier, vol. 108(C), pages 92-99.
    3. Channapattana, S.V. & Pawar, Abhay A. & Kamble, Prashant G., 2017. "Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model," Applied Energy, Elsevier, vol. 187(C), pages 84-95.
    4. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
    5. Mohamed Ismail, Harun & Ng, Hoon Kiat & Queck, Cheen Wei & Gan, Suyin, 2012. "Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends," Applied Energy, Elsevier, vol. 92(C), pages 769-777.
    6. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    7. Fukang Ma & Changlu Zhao & Fujun Zhang & Zhenfeng Zhao & Shuanlu Zhang, 2015. "Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 8(6), pages 1-19, June.
    8. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    9. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    10. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    11. Yao, Mingfa & Ma, Tianyu & Wang, Hu & Zheng, Zunqing & Liu, Haifeng & Zhang, Yan, 2018. "A theoretical study on the effects of thermal barrier coating on diesel engine combustion and emission characteristics," Energy, Elsevier, vol. 162(C), pages 744-752.
    12. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    13. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    14. Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
    15. Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.
    16. Gong, Changming & Liu, Fenghua & Sun, Jingzhen & Wang, Kang, 2016. "Effect of compression ratio on performance and emissions of a stratified-charge DISI (direct injection spark ignition) methanol engine," Energy, Elsevier, vol. 96(C), pages 166-175.
    17. Venu, Harish & Veza, Ibham & Selvam, Lokesh & Appavu, Prabhu & Raju, V. Dhana & Subramani, Lingesan & Nair, Jayashri N., 2022. "Analysis of particle size diameter (PSD), mass fraction burnt (MFB) and particulate number (PN) emissions in a diesel engine powered by diesel/biodiesel/n-amyl alcohol blends," Energy, Elsevier, vol. 250(C).
    18. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    19. Hazar, Hanbey & Tekdogan, Remziye & Sevinc, Huseyin, 2021. "Determination of the effects of oxygen-enriched air with the help of zeolites on the exhaust emission and performance of a diesel engine," Energy, Elsevier, vol. 236(C).
    20. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:105:y:2013:i:c:p:271-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.