IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i7p2256-2265.html
   My bibliography  Save this article

Modeling of NOx formation in diesel engines using finite-rate chemical kinetics

Author

Listed:
  • Aithal, S.M.

Abstract

A fast, physics-based model to predict the temporal evolution of NOx in diesel engines is investigated using finite-rate chemical kinetics. The temporal variation of temperature required for the computation of the reaction rate constants is obtained from the solution of the energy equation. NOx formation is modeled by using a six step mechanism with eight species instead of the traditional equilibrium calculations based on the Zeldovich mechanism. Fuel combustion chemistry is modeled by a single-step global reaction. Effects of various stages of combustion on NOx formation is included using a phenomenological burning rate model. The effects of composition and temperature on the thermophysical properties of the working fluid are included in the computations. Comparison with measured single-cylinder engine-out NO shows good agreement with experimental data. The validated model is then used to demonstrate the impact of various operating parameters such as injection timing and EGR on engine-out NOx. This fast, robust model has potential applications in model-based real-time control strategies seeking to reduce feed gas NOx emissions from diesel engines.

Suggested Citation

  • Aithal, S.M., 2010. "Modeling of NOx formation in diesel engines using finite-rate chemical kinetics," Applied Energy, Elsevier, vol. 87(7), pages 2256-2265, July.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:7:p:2256-2265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00024-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fischer, M. & Jiang, X., 2015. "Numerical optimisation for model evaluation in combustion kinetics," Applied Energy, Elsevier, vol. 156(C), pages 793-803.
    2. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    3. Szwaja, Stanislaw & Jamrozik, Arkadiusz & Tutak, Wojciech, 2013. "A two-stage combustion system for burning lean gasoline mixtures in a stationary spark ignited engine," Applied Energy, Elsevier, vol. 105(C), pages 271-281.
    4. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    5. Amba Prasad Rao, G. & Kaleemuddin, Syed, 2011. "Development of variable timing fuel injection cam for effective abatement of diesel engine emissions," Applied Energy, Elsevier, vol. 88(8), pages 2653-2662, August.
    6. Asprion, Jonas & Chinellato, Oscar & Guzzella, Lino, 2013. "A fast and accurate physics-based model for the NOx emissions of Diesel engines," Applied Energy, Elsevier, vol. 103(C), pages 221-233.
    7. Aithal, S.M. & Upadhyay, D., 2012. "Feasibility study of the potential use of chemistry based emission predictions for real-time control of modern diesel engines," Applied Energy, Elsevier, vol. 91(1), pages 475-482.
    8. Molina, S. & Guardiola, C. & Martín, J. & García-Sarmiento, D., 2014. "Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine," Applied Energy, Elsevier, vol. 119(C), pages 405-416.
    9. Tauzia, Xavier & Maiboom, Alain, 2013. "Experimental study of an automotive Diesel engine efficiency when running under stoichiometric conditions," Applied Energy, Elsevier, vol. 105(C), pages 116-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:7:p:2256-2265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.