IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v103y2013icp552-561.html
   My bibliography  Save this article

Exergy analysis of a high-temperature-steam-driven, varied-pressure, humidification–dehumidification system coupled with reverse osmosis

Author

Listed:
  • Al-Sulaiman, Fahad A.
  • Prakash Narayan, G.
  • Lienhard, John H.

Abstract

In this study, exergy analysis of a novel desalination system is presented and discussed. The water desalination is carried out using combined humidification–dehumidification and reverse osmosis technologies. Six system performance parameters are examined: overall exergetic efficiency, equivalent electricity consumption, specific exergy destruction, specific exergy lost, and total true specific exergy lost, as well as the exergy destruction ratios of the main components. The total true specific exergy lost is a new parameter presented in this study. It is a function of summation of total the exergy destruction rate and loss per total mass flow rate of the total pure water produced. This parameter is found to be a useful parameter to assess the exergetic performance of the system considered. By contrast, use of overall exergetic efficiency as an assessment tool can result in misleading conclusions for such a desalination system and, hence, is not recommended. Furthermore, this study reveals that the highest exergy destruction occurs in the thermal vapor compressor, which accounts for 50% of the total exergy destruction of the system considered. This study, in addition, demonstrates that the specific exergy destruction of the dehumidifier and TVC are the parameters that most strongly affect the performance of the system.

Suggested Citation

  • Al-Sulaiman, Fahad A. & Prakash Narayan, G. & Lienhard, John H., 2013. "Exergy analysis of a high-temperature-steam-driven, varied-pressure, humidification–dehumidification system coupled with reverse osmosis," Applied Energy, Elsevier, vol. 103(C), pages 552-561.
  • Handle: RePEc:eee:appene:v:103:y:2013:i:c:p:552-561
    DOI: 10.1016/j.apenergy.2012.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191200726X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Narayan, G. Prakash & McGovern, Ronan K. & Zubair, Syed M. & Lienhard, John H., 2012. "High-temperature-steam-driven, varied-pressure, humidification-dehumidification system coupled with reverse osmosis for energy-efficient seawater desalination," Energy, Elsevier, vol. 37(1), pages 482-493.
    2. Tchanche, B.F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2010. "Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system," Applied Energy, Elsevier, vol. 87(4), pages 1295-1306, April.
    3. Sharqawy, Mostafa H. & Zubair, Syed M. & Lienhard, John H., 2011. "Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis," Energy, Elsevier, vol. 36(11), pages 6617-6626.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
    2. Sayyaadi, Hoseyn & Ghorbani, Ghadir, 2018. "Conceptual design and optimization of a small-scale dual power-desalination system based on the Stirling prime-mover," Applied Energy, Elsevier, vol. 223(C), pages 457-471.
    3. Li, Yang & Huang, Xin & Peng, Hao & Ling, Xiang & Tu, ShanDong, 2018. "Simulation and optimization of humidification-dehumidification evaporation system," Energy, Elsevier, vol. 145(C), pages 128-140.
    4. Qureshi, Bilal Ahmed & Zubair, Syed M., 2015. "Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems," Energy, Elsevier, vol. 93(P1), pages 256-265.
    5. Blanco-Marigorta, A.M. & Lozano-Medina, A. & Marcos, J.D., 2017. "A critical review of definitions for exergetic efficiency in reverse osmosis desalination plants," Energy, Elsevier, vol. 137(C), pages 752-760.
    6. Fan, Hongming & Shao, Shuangquan & Tian, Changqing, 2014. "Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control," Applied Energy, Elsevier, vol. 113(C), pages 883-890.
    7. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    8. Li, Guo-Pei & Zhang, Li-Zhi, 2016. "Investigation of a solar energy driven and hollow fiber membrane-based humidification–dehumidification desalination system," Applied Energy, Elsevier, vol. 177(C), pages 393-408.
    9. Mauro Luberti & Mauro Capocelli, 2023. "Enhanced Humidification–Dehumidification (HDH) Systems for Sustainable Water Desalination," Energies, MDPI, vol. 16(17), pages 1-28, September.
    10. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    11. Li, Shuang-Fei & Liu, Zhen-Hua & Shao, Zhi-Xiong & Xiao, Hong-shen & Xia, Ning, 2018. "Performance study on a passive solar seawater desalination system using multi-effect heat recovery," Applied Energy, Elsevier, vol. 213(C), pages 343-352.
    12. Sadeghi, Mohsen & Yari, Mortaza & Mahmoudi, S.M.S. & Jafari, Moharram, 2017. "Thermodynamic analysis and optimization of a novel combined power and ejector refrigeration cycle – Desalination system," Applied Energy, Elsevier, vol. 208(C), pages 239-251.
    13. Fares, Mark M. & Ju, Xing & Elgendy, E. & Fatouh, M. & Zhang, Heng & Xu, Chao & Abd El-Samie, Mostafa M., 2024. "Techno-exergy-economic assessment of humidification-dehumidification/reverse osmosis hybrid desalination system integrated with concentrated photovoltaic/thermal," Renewable Energy, Elsevier, vol. 227(C).
    14. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2019. "Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system," Energy, Elsevier, vol. 166(C), pages 871-885.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Xin & Liu, Su & Yan, Junchen & Broesicke, Osvaldo A. & Chen, Yongsheng & Crittenden, John, 2020. "Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration," Applied Energy, Elsevier, vol. 259(C).
    2. Qureshi, Bilal Ahmed & Zubair, Syed M., 2015. "Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems," Energy, Elsevier, vol. 93(P1), pages 256-265.
    3. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    4. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    5. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    6. Altaee, Ali & Zhou, John & Alhathal Alanezi, Adnan & Zaragoza, Guillermo, 2017. "Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters," Applied Energy, Elsevier, vol. 206(C), pages 303-311.
    7. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    8. Li, Jing & Pei, Gang & Li, Yunzhu & Ji, Jie, 2013. "Analysis of a novel gravity driven organic Rankine cycle for small-scale cogeneration applications," Applied Energy, Elsevier, vol. 108(C), pages 34-44.
    9. Golonis, Chrysanthos & Skiadopoulos, Anastasios & Manolakos, Dimitris & Kosmadakis, George, 2021. "Assessment of the performance of a low-temperature Organic Rankine Cycle engine coupled with a concentrating PV-Thermal system," Renewable Energy, Elsevier, vol. 179(C), pages 1085-1097.
    10. Stijepovic, Mirko Z. & Papadopoulos, Athanasios I. & Linke, Patrick & Grujic, Aleksandar S. & Seferlis, Panos, 2014. "An exergy composite curves approach for the design of optimum multi-pressure organic Rankine cycle processes," Energy, Elsevier, vol. 69(C), pages 285-298.
    11. Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
    12. Shu, Gequn & Yu, Guopeng & Tian, Hua & Wei, Haiqiao & Liang, Xingyu, 2014. "A Multi-Approach Evaluation System (MA-ES) of Organic Rankine Cycles (ORC) used in waste heat utilization," Applied Energy, Elsevier, vol. 132(C), pages 325-338.
    13. Borunda, Mónica & Jaramillo, O.A. & Dorantes, R. & Reyes, Alberto, 2016. "Organic Rankine Cycle coupling with a Parabolic Trough Solar Power Plant for cogeneration and industrial processes," Renewable Energy, Elsevier, vol. 86(C), pages 651-663.
    14. McGovern, Ronan K. & Thiel, Gregory P. & Prakash Narayan, G. & Zubair, Syed M. & Lienhard, John H., 2013. "Performance limits of zero and single extraction humidification-dehumidification desalination systems," Applied Energy, Elsevier, vol. 102(C), pages 1081-1090.
    15. Cho, Soo-Yong & Cho, Chong-Hyun, 2015. "An experimental study on the organic Rankine cycle to determine as to how efficiently utilize fluctuating thermal energy," Renewable Energy, Elsevier, vol. 80(C), pages 73-79.
    16. Lee, Sangkeum & Hong, Junhee & Har, Dongsoo, 2016. "Jointly optimized control for reverse osmosis desalination process with different types of energy resource," Energy, Elsevier, vol. 117(P1), pages 116-130.
    17. Blanco-Marigorta, A.M. & Lozano-Medina, A. & Marcos, J.D., 2017. "A critical review of definitions for exergetic efficiency in reverse osmosis desalination plants," Energy, Elsevier, vol. 137(C), pages 752-760.
    18. Cho, Soo-Yong & Cho, Chong-Hyun & Choi, Sang-Kyu, 2015. "Experiment and cycle analysis on a partially admitted axial-type turbine used in the organic Rankine cycle," Energy, Elsevier, vol. 90(P1), pages 643-651.
    19. Zahedi, Rahim & Ahmadi, Abolfazl & Dashti, Reza, 2021. "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC cycles with methane system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Bracco, Stefano & Damiani, Lorenzo, 2012. "A non-conventional interpretation of thermal regeneration in steam cycles," Applied Energy, Elsevier, vol. 97(C), pages 548-557.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:103:y:2013:i:c:p:552-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.