IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp31-43.html
   My bibliography  Save this article

A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source

Author

Listed:
  • Gholizadeh, Towhid
  • Vajdi, Mohammad
  • Rostamzadeh, Hadi

Abstract

Among different types of geothermal processing used in the energy conversion systems, flash-binary geothermal can be the best scenario for high-temperature geothermal sources. Reviewing the available literature it can be found that the flash-binary geothermal power plants have a great potential to be extended to trigeneration systems, nonetheless they have received less attention. In this regard, a new trigeneration system for freshwater, power, and cooling production is devised using a flash-binary geothermal heat source at 170°C. In this devised trigeneration system, a humidification-dehumidification (HDH) unit is used as a binary cycle. Another merit of the devised trigeneration system is provision of two different cooling temperatures for sub- and above-zero applications via using two ejector refrigeration cycles (ERCs). The feasibility of the reckoned trigeneration system is investigated from 1st and 2nd laws of thermodynamics viewpoint. Later, genetic algorithm (GA) method is used to optimize performance of the devised system by defining different optimum modes. It is found that optimization leads to the increment of the steam turbine output power, overall cooling load, trigeneration-based gain-output-ratio (TGOR) and exergy efficiency of around 77.08%, 87.01%, 8.18%, and 46.36%, respectively. The overall exergy destruction of the devised trigeneration system at the base mode is calculated 946.7 kW which is decreased to 882.3 kW at the optimum mode. Among all elements, recovery heat exchanger is recognized as the highly destructive element in the base mode by exergy destruction of 308.5 kW which is decreased to 194.7 kW at this optimum mode. At last, an intensive parametric evaluation of some influential parameters is presented.

Suggested Citation

  • Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:31-43
    DOI: 10.1016/j.renene.2019.11.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119318567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Narayan, G. Prakash & McGovern, Ronan K. & Zubair, Syed M. & Lienhard, John H., 2012. "High-temperature-steam-driven, varied-pressure, humidification-dehumidification system coupled with reverse osmosis for energy-efficient seawater desalination," Energy, Elsevier, vol. 37(1), pages 482-493.
    2. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    3. Barkhordarian, Orbel & Behbahaninia, Ali & Bahrampoury, Rasool, 2017. "A novel ammonia-water combined power and refrigeration cycle with two different cooling temperature levels," Energy, Elsevier, vol. 120(C), pages 816-826.
    4. Mokarram, N. Hassani & Mosaffa, A.H., 2018. "A comparative study and optimization of enhanced integrated geothermal flash and Kalina cycles: A thermoeconomic assessment," Energy, Elsevier, vol. 162(C), pages 111-125.
    5. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    6. Kanoglu, Mehmet & Bolatturk, Ali, 2008. "Performance and parametric investigation of a binary geothermal power plant by exergy," Renewable Energy, Elsevier, vol. 33(11), pages 2366-2374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Fei & Yang, Changjin & Li, Biao & Silang, Yangji & Zhu, Yuhui & Farkoush, Saeid Gholami, 2022. "Thermodynamic and economic sensitivity analyses of a geothermal-based trigeneration system; performance enhancement through determining the best zeotropic working fluid," Energy, Elsevier, vol. 246(C).
    2. Boukelia, T.E. & Arslan, O. & Bouraoui, A., 2021. "Thermodynamic performance assessment of a new solar tower-geothermal combined power plant compared to the conventional solar tower power plant," Energy, Elsevier, vol. 232(C).
    3. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    4. Saeed Alqaed & Ali Fouda & Hassan F. Elattar & Jawed Mustafa & Fahad Awjah Almehmadi & Hassanein A. Refaey & Mathkar A. Alharthi, 2022. "Performance Evaluation of a Solar Heat-Driven Poly-Generation System for Residential Buildings Using Various Arrangements of Heat Recovery Units," Energies, MDPI, vol. 15(22), pages 1-26, November.
    5. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Shakibi, Hamid & Faal, Mehrdad Yousefi & Assareh, Ehsanolah & Agarwal, Neha & Yari, Mortaza & Latifi, Seyed Ali & Ghodrat, Maryam & Lee, Moonyong, 2023. "Design and multi-objective optimization of a multi-generation system based on PEM electrolyzer, RO unit, absorption cooling system, and ORC utilizing machine learning approaches; a case study of Austr," Energy, Elsevier, vol. 278(C).
    7. Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
    8. Qian, Xiaoyan & Dai, Jie & Jiang, Weimin & Cai, Helen & Ye, Xixi & Shahab Vafadaran, Mohammad, 2024. "Economic viability and investment returns of innovative geothermal tri-generation systems: A comparative study," Renewable Energy, Elsevier, vol. 226(C).
    9. Mohammadi, Zahra & Fallah, Mohsen, 2023. "Conventional and advanced exergy investigation of a double flash cycle integrated by absorption cooling, ORC, and TEG power system driven by geothermal energy," Energy, Elsevier, vol. 282(C).
    10. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    12. Feng, Jieru & Huang, Yiqing & Li, Juqiang & Li, Xuetao, 2024. "Design and multi-criteria optimization and financial assessment of an innovative combined power plant and desalination process," Energy, Elsevier, vol. 300(C).
    13. Nima Ghasemzadeh & Shayan Sharafi Laleh & Saeed Soltani & Mortaza Yari & Marc A. Rosen, 2023. "Using Green Energy Sources in Trigeneration Systems to Reduce Environmental Pollutants: Thermodynamic and Environmental Evaluation," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
    14. Sheikh Muhammad Ali Haider & Tahir Abdul Hussain Ratlamwala & Khurram Kamal & Fahad Alqahtani & Mohammed Alkahtani & Emad Mohammad & Moath Alatefi, 2023. "Energy and Exergy Analysis of a Geothermal Sourced Multigeneration System for Sustainable City," Energies, MDPI, vol. 16(4), pages 1-19, February.
    15. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2020. "A new high-efficient cooling/power cogeneration system based on a double-flash geothermal power plant and a novel zeotropic bi-evaporator ejector refrigeration cycle," Renewable Energy, Elsevier, vol. 162(C), pages 2126-2152.
    16. Tut Haklıdır, Füsun S., 2020. "The importance of long-term well management in geothermal power systems using fuzzy control: A Western Anatolia (Turkey) case study," Energy, Elsevier, vol. 213(C).
    17. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    18. Mahmoudi, S.M. Seyed & Akbari, A.D. & Rosen, Marc A., 2022. "A novel combination of absorption heat transformer and refrigeration for cogenerating cooling and distilled water: Thermoeconomic optimization," Renewable Energy, Elsevier, vol. 194(C), pages 978-996.
    19. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Yan & Mihardjo, Leonardus WW. & Dahari, Mahidzal & Ghaebi, Hadi & Parikhani, Towhid & Mohamed, Abdeliazim Mustafa, 2021. "An innovative double-flash binary cogeneration cooling and power (CCP) system: Thermodynamic evaluation and multi-objective optimization," Energy, Elsevier, vol. 214(C).
    2. Zhang, Mingming & Timoshin, Anton & Al-Ammar, Essam A. & Sillanpaa, Mika & Zhang, Guiju, 2023. "Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system," Energy, Elsevier, vol. 263(PD).
    3. Liu, Fei & Yang, Changjin & Li, Biao & Silang, Yangji & Zhu, Yuhui & Farkoush, Saeid Gholami, 2022. "Thermodynamic and economic sensitivity analyses of a geothermal-based trigeneration system; performance enhancement through determining the best zeotropic working fluid," Energy, Elsevier, vol. 246(C).
    4. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    5. Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.
    6. Chen, Ying & Liu, Yuxuan & Nam, Eun-Young & Zhang, Yang & Dahlak, Aida, 2023. "Exergoeconomic and exergoenvironmental analysis and optimization of an integrated double-flash-binary geothermal system and dual-pressure ORC using zeotropic mixtures; multi-objective optimization," Energy, Elsevier, vol. 283(C).
    7. Kharseh, Mohamad & Al-Khawaja, Mohammed & Hassani, Ferri, 2015. "Utilization of oil wells for electricity generation: Performance and economics," Energy, Elsevier, vol. 90(P1), pages 910-916.
    8. Hai, Tao & Asadollahzadeh, Muhammad & Chauhan, Bhupendra Singh & AlQemlas, Turki & Elbadawy, Ibrahim & Salah, Bashir & Feyzbaxsh, Mahrad, 2023. "3E investigation and artificial neural network optimization of a new triple-flash geothermally-powered configuration," Renewable Energy, Elsevier, vol. 215(C).
    9. Guo, T. & Wang, H.X. & Zhang, S.J., 2011. "Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources," Energy, Elsevier, vol. 36(5), pages 2639-2649.
    10. Unverdi, Murat & Cerci, Yunus, 2013. "Performance analysis of Germencik Geothermal Power Plant," Energy, Elsevier, vol. 52(C), pages 192-200.
    11. Yekoladio, P.J. & Bello-Ochende, T. & Meyer, J.P., 2013. "Design and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS)," Renewable Energy, Elsevier, vol. 55(C), pages 128-137.
    12. Olusola Bamisile & Qi Huang & Paul O. K. Anane & Mustafa Dagbasi, 2019. "Performance Analyses of a Renewable Energy Powered System for Trigeneration," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    13. Mengying Li & Noam Lior, 2014. "Comparative Analysis of Power Plant Options for Enhanced Geothermal Systems (EGS)," Energies, MDPI, vol. 7(12), pages 1-19, December.
    14. Yilmaz, Ceyhun & Koyuncu, Ismail, 2021. "Thermoeconomic modeling and artificial neural network optimization of Afyon geothermal power plant," Renewable Energy, Elsevier, vol. 163(C), pages 1166-1181.
    15. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2020. "A new high-efficient cooling/power cogeneration system based on a double-flash geothermal power plant and a novel zeotropic bi-evaporator ejector refrigeration cycle," Renewable Energy, Elsevier, vol. 162(C), pages 2126-2152.
    16. Ebadollahi, Mohammad & Amidpour, Majid & Pourali, Omid & Ghaebi, Hadi, 2022. "Development of a novel flexible multigeneration energy system for meeting the energy needs of remote areas," Renewable Energy, Elsevier, vol. 198(C), pages 1224-1242.
    17. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    18. Ghorbani, Sobhan & Deymi-Dashtebayaz, Mahdi & Dadpour, Daryoush & Delpisheh, Mostafa, 2023. "Parametric study and optimization of a novel geothermal-driven combined cooling, heating, and power (CCHP) system," Energy, Elsevier, vol. 263(PF).
    19. Rashidi, Jouan & Yoo, ChangKyoo, 2018. "Exergy, exergo-economic, and exergy-pinch analyses (EXPA) of the kalina power-cooling cycle with an ejector," Energy, Elsevier, vol. 155(C), pages 504-520.
    20. Abdolalipouradl, Mehran & Mohammadkhani, Farzad & Khalilarya, Shahram, 2020. "A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:31-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.