IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp1081-1090.html
   My bibliography  Save this article

Performance limits of zero and single extraction humidification-dehumidification desalination systems

Author

Listed:
  • McGovern, Ronan K.
  • Thiel, Gregory P.
  • Prakash Narayan, G.
  • Zubair, Syed M.
  • Lienhard, John H.

Abstract

Given simultaneous heat and mass transfer and a multiplicity of possible temperature and flow configurations, the optimization of humidification-dehumidification desalination systems is complex. In literature, this optimization has been tackled by considering moist air to follow the saturation curve in the humidifier and dehumidifier of a closed air water heated cycle. Under similar conditions and the same pinch point temperature differences, energy recovery was shown to improve with an increasing number of stages. In the present work, the limits upon the energy recovery and the water recovery (product water per unit of feed) of closed air water heated cycles are investigated. This is done by considering heat and mass exchangers to be sufficiently large to provide zero pinch point temperature and concentration differences with in the humidifier and dehumidifier. For cycles operating with a feed temperature of 25°C and a top air temperature of 70°C, GOR is limited to approximately 3.5 without extractions (i.e. single stage system) and 14 with a single extraction (i.e. dual stage system) while RR is limited to approximately 7% without extractions and 11% with a single extraction. GOR increases and RR decreases as the temperature range of the cycle decreases, i.e. as the feed temperature increases or the top air temperature decreases. A single extraction is shown to be useful only when heat and mass exchangers are large in size. In addition, the effects of salinity and the validity of ideal gas assumptions upon the modeling of HDH systems are discussed.

Suggested Citation

  • McGovern, Ronan K. & Thiel, Gregory P. & Prakash Narayan, G. & Zubair, Syed M. & Lienhard, John H., 2013. "Performance limits of zero and single extraction humidification-dehumidification desalination systems," Applied Energy, Elsevier, vol. 102(C), pages 1081-1090.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1081-1090
    DOI: 10.1016/j.apenergy.2012.06.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912004709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.06.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Narayan, G. Prakash & McGovern, Ronan K. & Zubair, Syed M. & Lienhard, John H., 2012. "High-temperature-steam-driven, varied-pressure, humidification-dehumidification system coupled with reverse osmosis for energy-efficient seawater desalination," Energy, Elsevier, vol. 37(1), pages 482-493.
    2. Narayan, G. Prakash & Sharqawy, Mostafa H. & Summers, Edward K. & Lienhard, John H. & Zubair, Syed M. & Antar, M.A., 2010. "The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1187-1201, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sayyaadi, Hoseyn & Ghorbani, Ghadir, 2018. "Conceptual design and optimization of a small-scale dual power-desalination system based on the Stirling prime-mover," Applied Energy, Elsevier, vol. 223(C), pages 457-471.
    2. Elhenawy, Yasser & Bassyouni, Mohamed & Fouad, Kareem & Sandid, Abdelfatah Marni & Abu-Zeid, Mostafa Abd El-Rady & Majozi, Thokozani, 2023. "Experimental and numerical simulation of solar membrane distillation and humidification – dehumidification water desalination system," Renewable Energy, Elsevier, vol. 215(C).
    3. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    4. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    5. Huang, Xin & Ke, Tingfen & Yu, Xiangqian & Liu, Weihong & Li, Yang & Ling, Xiang, 2020. "Pressure drop modeling and performance optimization of a humidification–dehumidification desalination system," Applied Energy, Elsevier, vol. 258(C).
    6. Chen, Junjie & Han, Dong & Gao, Sijie & He, Weifeng & Peng, Tao, 2021. "Use of single air extraction and injection to thermodynamically balance the combined heat and mass transfer process," Energy, Elsevier, vol. 224(C).
    7. Qasem, Naef A.A. & Zubair, Syed M. & Abdallah, Ayman M. & Elbassoussi, Muhammad H. & Ahmed, Mohamed A., 2020. "Novel and efficient integration of a humidification-dehumidification desalination system with an absorption refrigeration system," Applied Energy, Elsevier, vol. 263(C).
    8. Mauro Luberti & Mauro Capocelli, 2023. "Enhanced Humidification–Dehumidification (HDH) Systems for Sustainable Water Desalination," Energies, MDPI, vol. 16(17), pages 1-28, September.
    9. El-Agouz, S.A. & Abd El-Aziz, G.B. & Awad, A.M., 2014. "Solar desalination system using spray evaporation," Energy, Elsevier, vol. 76(C), pages 276-283.
    10. He, W.F. & Chen, J.J. & Zhen, M.R. & Han, D., 2019. "Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations," Energy, Elsevier, vol. 174(C), pages 768-778.
    11. Giwa, Adewale & Akther, Nawshad & Housani, Amna Al & Haris, Sabeera & Hasan, Shadi Wajih, 2016. "Recent advances in humidification dehumidification (HDH) desalination processes: Improved designs and productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 929-944.
    12. Hai, Tao & Ashraf Ali, Masood & Alizadeh, As'ad & Sharma, Aman & Sayed Mohammed Metwally, Ahmed & Ullah, Mirzat & Tavasoli, Masoumeh, 2023. "Enhancing the performance of a Novel multigeneration system with electricity, heating, cooling, and freshwater products using genetic algorithm optimization and analysis of energy, exergy, and entrans," Renewable Energy, Elsevier, vol. 209(C), pages 184-205.
    13. Rasikh Tariq & Jacinto Torres Jimenez & Nadeem Ahmed Sheikh & Sohail Khan, 2020. "Mathematical Approach to Improve the Thermoeconomics of a Humidification Dehumidification Solar Desalination System," Mathematics, MDPI, vol. 9(1), pages 1-31, December.
    14. Junjie Chen & Dong Han & Weifeng He & Majid Amidpour, 2021. "Establishing Surrogate Model to Predict the Optimal Thermodynamic and Economic Performance of a Packed Bed Humidifier via Multi-Objective Optimization," Sustainability, MDPI, vol. 13(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giwa, Adewale & Akther, Nawshad & Housani, Amna Al & Haris, Sabeera & Hasan, Shadi Wajih, 2016. "Recent advances in humidification dehumidification (HDH) desalination processes: Improved designs and productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 929-944.
    2. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    3. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    4. Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
    5. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    6. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    7. Thiel, Gregory P. & McGovern, Ronan K. & Zubair, Syed M. & Lienhard V, John H., 2014. "Thermodynamic equipartition for increased second law efficiency," Applied Energy, Elsevier, vol. 118(C), pages 292-299.
    8. Junjie Chen & Dong Han & Weifeng He & Majid Amidpour, 2021. "Establishing Surrogate Model to Predict the Optimal Thermodynamic and Economic Performance of a Packed Bed Humidifier via Multi-Objective Optimization," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    9. Kim, Taeyoung & Lee, Seungjae & Park, Heekyung, 2011. "The potential of PEM fuel cell for a new drinking water source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3676-3689.
    10. Abedi, Mahyar & Tan, Xu & Klausner, James F. & Bénard, Andre, 2023. "Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems," Renewable Energy, Elsevier, vol. 202(C), pages 88-102.
    11. Lee, Sangkeum & Hong, Junhee & Har, Dongsoo, 2016. "Jointly optimized control for reverse osmosis desalination process with different types of energy resource," Energy, Elsevier, vol. 117(P1), pages 116-130.
    12. Huang, Xin & Chen, Hu & Ling, Xiang & Liu, Lin & Huhe, Taoli, 2022. "Investigation of heat and mass transfer and gas–liquid thermodynamic process paths in a humidifier," Energy, Elsevier, vol. 261(PA).
    13. Abhishek Tiwari & Manish K. Rathod & Amit Kumar, 2023. "A comprehensive review of solar-driven desalination systems and its advancements," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1052-1083, February.
    14. Sadeghi, Mohsen & Yari, Mortaza & Mahmoudi, S.M.S. & Jafari, Moharram, 2017. "Thermodynamic analysis and optimization of a novel combined power and ejector refrigeration cycle – Desalination system," Applied Energy, Elsevier, vol. 208(C), pages 239-251.
    15. Audah, N. & Ghaddar, N. & Ghali, K., 2011. "Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs," Applied Energy, Elsevier, vol. 88(11), pages 3726-3736.
    16. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).
    17. Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.
    18. Zejli, Driss & Ouammi, Ahmed & Sacile, Roberto & Dagdougui, Hanane & Elmidaoui, Azzeddine, 2011. "An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system," Applied Energy, Elsevier, vol. 88(11), pages 4042-4054.
    19. Hadi Rostamzadeh & Saeed Rostami & Majid Amidpour & Weifeng He & Dong Han, 2021. "Seawater Desalination via Waste Heat Recovery from Generator of Wind Turbines: How Economical Is It to Use a Hybrid HDH-RO Unit?," Sustainability, MDPI, vol. 13(14), pages 1-40, July.
    20. Lee, Chin-Hyung & Chang, Kyong-Ho, 2013. "Failure pressure of a pressurized girth-welded super duplex stainless steel pipe in reverse osmosis desalination plants," Energy, Elsevier, vol. 61(C), pages 565-574.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1081-1090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.