IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318793.html
   My bibliography  Save this article

Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration

Author

Listed:
  • Tong, Xin
  • Liu, Su
  • Yan, Junchen
  • Broesicke, Osvaldo A.
  • Chen, Yongsheng
  • Crittenden, John

Abstract

The osmotic heat engine is a promising technology for harvesting low-grade heat from different heat sources. However, a better understanding of the system performance, thermodynamic efficiencies, and suitable application circumstances (type of heat sources, system energy generation capacity, etc.) is needed before the transition can be made from conceptual design to practice. Firstly, the energy efficiency (ƞth) and exergy efficiency (ƞX) of a thermolytic osmotic heat engine (NH4HCO3 solution as the working fluid) were investigated in this study. It was found that the osmotic heat engine performs better when the operating temperature (heat source temperature) is lower (323 K). Additionally, a higher draw solution concentration and a lower feed solution concentration can increase both ƞX and ƞth. Subsequently, the energy return on investment with either low-grade industrial waste heat or solar thermal energy acting as the heat source was calculated. It was found that different energy return on investment values can be obtained with different heat sources. The results show that when industrial waste heat is used as the heat source, a much higher energy return on investment value (approximately 55) can be obtained. This finding indicates that it is suitable to generate electricity from industrial waste heat using the osmotic heat engine. When solar thermal energy is used as the heat source the energy return on investment value is 1.3–2.2 because there is a large amount of embodied energy in the flat-plate solar collector. This study represents a step forward towards the practical application of the osmotic heat engine.

Suggested Citation

  • Tong, Xin & Liu, Su & Yan, Junchen & Broesicke, Osvaldo A. & Chen, Yongsheng & Crittenden, John, 2020. "Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318793
    DOI: 10.1016/j.apenergy.2019.114192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Narendra & Kaushik, S.C. & Misra, R.D., 2000. "Exergetic analysis of a solar thermal power system," Renewable Energy, Elsevier, vol. 19(1), pages 135-143.
    2. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    3. Rattner, Alexander S. & Garimella, Srinivas, 2011. "Energy harvesting, reuse and upgrade to reduce primary energy usage in the USA," Energy, Elsevier, vol. 36(10), pages 6172-6183.
    4. Tchanche, B.F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2010. "Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system," Applied Energy, Elsevier, vol. 87(4), pages 1295-1306, April.
    5. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    6. Alexandre Hugo & Radu Zmeureanu, 2012. "Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage," Energies, MDPI, vol. 5(10), pages 1-14, October.
    7. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    8. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    9. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    10. Kwak, Dong-Hun & Binns, Michael & Kim, Jin-Kuk, 2014. "Integrated design and optimization of technologies for utilizing low grade heat in process industries," Applied Energy, Elsevier, vol. 131(C), pages 307-322.
    11. Bevacqua, M. & Tamburini, A. & Papapetrou, M. & Cipollina, A. & Micale, G. & Piacentino, A., 2017. "Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion," Energy, Elsevier, vol. 137(C), pages 1293-1307.
    12. Tamburini, A. & Tedesco, M. & Cipollina, A. & Micale, G. & Ciofalo, M. & Papapetrou, M. & Van Baak, W. & Piacentino, A., 2017. "Reverse electrodialysis heat engine for sustainable power production," Applied Energy, Elsevier, vol. 206(C), pages 1334-1353.
    13. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    14. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    15. Vikström, Hanna & Davidsson, Simon & Höök, Mikael, 2013. "Lithium availability and future production outlooks," Applied Energy, Elsevier, vol. 110(C), pages 252-266.
    16. Sharqawy, Mostafa H. & Zubair, Syed M. & Lienhard, John H., 2011. "Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis," Energy, Elsevier, vol. 36(11), pages 6617-6626.
    17. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    18. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    19. Bruce E. Logan & Menachem Elimelech, 2012. "Membrane-based processes for sustainable power generation using water," Nature, Nature, vol. 488(7411), pages 313-319, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2021. "Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy," Renewable Energy, Elsevier, vol. 175(C), pages 638-649.
    2. Lallart, Mickaël & Yan, Linjuan & Miki, Hiroyuki & Sebald, Gaël & Diguet, Gildas & Ohtsuka, Makoto & Kohl, Manfred, 2021. "Heusler alloy-based heat engine using pyroelectric conversion for small-scale thermal energy harvesting," Applied Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tufa, Ramato Ashu & Pawlowski, Sylwin & Veerman, Joost & Bouzek, Karel & Fontananova, Enrica & di Profio, Gianluca & Velizarov, Svetlozar & Goulão Crespo, João & Nijmeijer, Kitty & Curcio, Efrem, 2018. "Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage," Applied Energy, Elsevier, vol. 225(C), pages 290-331.
    2. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    3. Michael Papapetrou & George Kosmadakis & Francesco Giacalone & Bartolomé Ortega-Delgado & Andrea Cipollina & Alessandro Tamburini & Giorgio Micale, 2019. "Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System," Energies, MDPI, vol. 12(17), pages 1-26, August.
    4. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Energetic and exergetic analyses on structural optimized parabolic trough solar receivers in a concentrated solar–thermal collector system," Energy, Elsevier, vol. 171(C), pages 611-623.
    5. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    6. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    7. Simon B. B. Solberg & Pauline Zimmermann & Øivind Wilhelmsen & Jacob J. Lamb & Robert Bock & Odne S. Burheim, 2022. "Heat to Hydrogen by Reverse Electrodialysis—Using a Non-Equilibrium Thermodynamics Model to Evaluate Hydrogen Production Concepts Utilising Waste Heat," Energies, MDPI, vol. 15(16), pages 1-22, August.
    8. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    9. Olkis, C. & Santori, G. & Brandani, S., 2018. "An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat," Applied Energy, Elsevier, vol. 231(C), pages 222-234.
    10. Bevacqua, M. & Tamburini, A. & Papapetrou, M. & Cipollina, A. & Micale, G. & Piacentino, A., 2017. "Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion," Energy, Elsevier, vol. 137(C), pages 1293-1307.
    11. Patricia Palenzuela & Marina Micari & Bartolomé Ortega-Delgado & Francesco Giacalone & Guillermo Zaragoza & Diego-César Alarcón-Padilla & Andrea Cipollina & Alessandro Tamburini & Giorgio Micale, 2018. "Performance Analysis of a RED-MED Salinity Gradient Heat Engine," Energies, MDPI, vol. 11(12), pages 1-23, December.
    12. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    13. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    14. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    15. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    16. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
    17. Stijepovic, Mirko Z. & Papadopoulos, Athanasios I. & Linke, Patrick & Grujic, Aleksandar S. & Seferlis, Panos, 2014. "An exergy composite curves approach for the design of optimum multi-pressure organic Rankine cycle processes," Energy, Elsevier, vol. 69(C), pages 285-298.
    18. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    19. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    20. Cioccolanti, Luca & Tascioni, Roberto & Arteconi, Alessia, 2018. "Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant," Applied Energy, Elsevier, vol. 221(C), pages 464-476.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.