IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp752-760.html
   My bibliography  Save this article

A critical review of definitions for exergetic efficiency in reverse osmosis desalination plants

Author

Listed:
  • Blanco-Marigorta, A.M.
  • Lozano-Medina, A.
  • Marcos, J.D.

Abstract

Different approaches for formulating exergetic efficiency in desalination plants are suggested in literature. In this work these formulations, applied to the reverse osmosis technology, are compared and critically reviewed. As a case study, a reverse osmosis desalination plant in operation has been considered. A key factor is the proper definition of the exergy value of the product and the exergy value of the fuel. In reverse osmosis modules, where chemical separation is carried out, chemical exergy plays also an important role. Another influential issue is the thermodynamic model used in the calculation of the thermodynamic properties. Inappropriate thermodynamic models and ambiguous exergetic efficiency definitions bring confused and contradictory results: negative values of the chemical exergy, exergy production in pumps, or larger irreversibilities in the membranes than in the pumps. The enormous deviations found in the Literature can only be due to different conceptual definitions. In order to clarify these contradictions, this work provides a precise definition for the exergetic efficiency in reverse osmosis desalination plants devices.

Suggested Citation

  • Blanco-Marigorta, A.M. & Lozano-Medina, A. & Marcos, J.D., 2017. "A critical review of definitions for exergetic efficiency in reverse osmosis desalination plants," Energy, Elsevier, vol. 137(C), pages 752-760.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:752-760
    DOI: 10.1016/j.energy.2017.05.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217308940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    2. Blanco-Marigorta, Ana M. & Masi, Marco & Manfrida, Giampaolo, 2014. "Exergo-environmental analysis of a reverse osmosis desalination plant in Gran Canaria," Energy, Elsevier, vol. 76(C), pages 223-232.
    3. Liu, Jie & Yuan, Junsheng & Xie, Lixin & Ji, Zhiyong, 2013. "Exergy analysis of dual-stage nanofiltration seawater desalination," Energy, Elsevier, vol. 62(C), pages 248-254.
    4. Janghorban Esfahani, I. & Yoo, C.K., 2013. "Exergy analysis and parametric optimization of three power and fresh water cogeneration systems using refrigeration chillers," Energy, Elsevier, vol. 59(C), pages 340-355.
    5. El-Emam, Rami Salah & Dincer, Ibrahim, 2014. "Thermodynamic and thermoeconomic analyses of seawater reverse osmosis desalination plant with energy recovery," Energy, Elsevier, vol. 64(C), pages 154-163.
    6. Qureshi, Bilal Ahmed & Zubair, Syed M., 2015. "Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems," Energy, Elsevier, vol. 93(P1), pages 256-265.
    7. Sharqawy, Mostafa H. & Zubair, Syed M. & Lienhard, John H., 2011. "Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis," Energy, Elsevier, vol. 36(11), pages 6617-6626.
    8. Lior, Noam & Zhang, Na, 2007. "Energy, exergy, and Second Law performance criteria," Energy, Elsevier, vol. 32(4), pages 281-296.
    9. Al-Sulaiman, Fahad A. & Prakash Narayan, G. & Lienhard, John H., 2013. "Exergy analysis of a high-temperature-steam-driven, varied-pressure, humidification–dehumidification system coupled with reverse osmosis," Applied Energy, Elsevier, vol. 103(C), pages 552-561.
    10. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    11. Nafey, A.S. & Sharaf, M.A., 2010. "Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations," Renewable Energy, Elsevier, vol. 35(11), pages 2571-2580.
    12. Nguyen, Tuong-Van & Voldsund, Mari & Elmegaard, Brian & Ertesvåg, Ivar Ståle & Kjelstrup, Signe, 2014. "On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing," Energy, Elsevier, vol. 73(C), pages 264-281.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadri, Somayyeh & Khoshkhoo, Ramin Haghighi & Ameri, Mohammad, 2018. "Optimum exergoeconomic modeling of novel hybrid desalination system (MEDAD+RO)," Energy, Elsevier, vol. 149(C), pages 74-83.
    2. Song, Daiwang & Zhou, Jie & Wang, Shenghui & Wang, Chengpeng & Liu, Sihan & Zhang, Yin & Tian, Lin & Xiao, Yexiang, 2023. "Adaptability evaluation of piston type high pressure pump integrated with energy recovery device through the numerical simulation and one year's island desalination," Energy, Elsevier, vol. 262(PA).
    3. Bait, Omar & Si-Ameur, Mohamed, 2017. "Tubular solar-energy collector integration: Performance enhancement of classical distillation unit," Energy, Elsevier, vol. 141(C), pages 818-838.
    4. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    2. Qureshi, Bilal Ahmed & Zubair, Syed M., 2015. "Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems," Energy, Elsevier, vol. 93(P1), pages 256-265.
    3. Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).
    4. Fares, Mark M. & Ju, Xing & Elgendy, E. & Fatouh, M. & Zhang, Heng & Xu, Chao & Abd El-Samie, Mostafa M., 2024. "Techno-exergy-economic assessment of humidification-dehumidification/reverse osmosis hybrid desalination system integrated with concentrated photovoltaic/thermal," Renewable Energy, Elsevier, vol. 227(C).
    5. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Stand-alone seawater RO (reverse osmosis) desalination powered by PV (photovoltaic) and PRO (pressure retarded osmosis)," Energy, Elsevier, vol. 86(C), pages 423-435.
    6. Eveloy, Valerie & Rodgers, Peter & Al Alili, Ali, 2017. "Multi-objective optimization of a pressurized solid oxide fuel cell – gas turbine hybrid system integrated with seawater reverse osmosis," Energy, Elsevier, vol. 123(C), pages 594-614.
    7. Janghorban Esfahani, Iman & Yoo, Changkyoo, 2014. "A highly efficient combined multi-effect evaporation-absorption heat pump and vapor-compression refrigeration part 2: Thermoeconomic and flexibility analysis," Energy, Elsevier, vol. 75(C), pages 327-337.
    8. Blanco-Marigorta, Ana M. & Masi, Marco & Manfrida, Giampaolo, 2014. "Exergo-environmental analysis of a reverse osmosis desalination plant in Gran Canaria," Energy, Elsevier, vol. 76(C), pages 223-232.
    9. Crivellari, Anna & Cozzani, Valerio & Dincer, Ibrahim, 2019. "Exergetic and exergoeconomic analyses of novel methanol synthesis processes driven by offshore renewable energies," Energy, Elsevier, vol. 187(C).
    10. Keçebaş, Ali, 2016. "Exergoenvironmental analysis for a geothermal district heating system: An application," Energy, Elsevier, vol. 94(C), pages 391-400.
    11. Huang, Yue & Zhu, Lin & He, Yangdong & Wang, Yuan & Hao, Qiang & Zhu, Yifei, 2023. "Carbon dioxide utilization based on exergoenvironmental sustainability assessment: A case study of CO2 hydrogenation to methanol," Energy, Elsevier, vol. 273(C).
    12. Hai, Tao & Zoghi, Mohammad & Abed, Hooman & Chauhan, Bhupendra Singh & Ahmed, Ahmed Najat, 2023. "Exergy-economic study and multi-objective optimization of a geothermal-based combined organic flash cycle and PEMFC for poly-generation purpose," Energy, Elsevier, vol. 268(C).
    13. Hadi Rostamzadeh & Saeed Rostami & Majid Amidpour & Weifeng He & Dong Han, 2021. "Seawater Desalination via Waste Heat Recovery from Generator of Wind Turbines: How Economical Is It to Use a Hybrid HDH-RO Unit?," Sustainability, MDPI, vol. 13(14), pages 1-40, July.
    14. Khanarmuei, Mohammadreza & Ahmadisedigh, Hossein & Ebrahimi, Iman & Gosselin, Louis & Mokhtari, Hamid, 2017. "Comparative design of plug and recirculation RO systems; thermoeconomic: Case study," Energy, Elsevier, vol. 121(C), pages 205-219.
    15. Huang, Yue & Zhu, Lin & He, Yangdong & Zeng, Xingyan & Wang, Yuan & Hao, Qiang & Zhang, Chaoli & Zhu, Yifei, 2024. "Exergoenvironment evaluation of carbon resource conversion and utilization via CO2 direct hydrogenation for methanol and power cogeneration," Energy, Elsevier, vol. 306(C).
    16. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    17. Kim, Minseok & Kim, Suhan, 2018. "Practical limit of energy production from seawater by full-scale pressure retarded osmosis," Energy, Elsevier, vol. 158(C), pages 373-382.
    18. da Silva, Julio A.M. & de Oliveira Junior, S., 2018. "Unit exergy cost and CO2 emissions of offshore petroleum production," Energy, Elsevier, vol. 147(C), pages 757-766.
    19. Eshoul, Nuri M. & Agnew, Brian & Anderson, Alexander & Atab, Mohanad S., 2017. "Exergetic and economic analysis of two-pass RO desalination proposed plant for domestic water and irrigation," Energy, Elsevier, vol. 122(C), pages 319-328.
    20. Cassetti, G. & Rocco, M.V. & Colombo, E., 2014. "Exergy based methods for economic and risk design optimization of energy systems: Application to a gas turbine," Energy, Elsevier, vol. 74(C), pages 269-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:752-760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.