Enhanced Humidification–Dehumidification (HDH) Systems for Sustainable Water Desalination
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Narayan, G. Prakash & McGovern, Ronan K. & Zubair, Syed M. & Lienhard, John H., 2012. "High-temperature-steam-driven, varied-pressure, humidification-dehumidification system coupled with reverse osmosis for energy-efficient seawater desalination," Energy, Elsevier, vol. 37(1), pages 482-493.
- Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
- McGovern, Ronan K. & Thiel, Gregory P. & Prakash Narayan, G. & Zubair, Syed M. & Lienhard, John H., 2013. "Performance limits of zero and single extraction humidification-dehumidification desalination systems," Applied Energy, Elsevier, vol. 102(C), pages 1081-1090.
- Clément Lacroix & Maxime Perier-Muzet & Driss Stitou, 2019. "Dynamic Modeling and Preliminary Performance Analysis of a New Solar Thermal Reverse Osmosis Desalination Process," Energies, MDPI, vol. 12(20), pages 1-32, October.
- Byrne, Paul & Fournaison, Laurence & Delahaye, Anthony & Ait Oumeziane, Yacine & Serres, Laurent & Loulergue, Patrick & Szymczyk, Anthony & Mugnier, Daniel & Malaval, Jean-Luc & Bourdais, Romain & Gue, 2015. "A review on the coupling of cooling, desalination and solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 703-717.
- Al-Sulaiman, Fahad A. & Prakash Narayan, G. & Lienhard, John H., 2013. "Exergy analysis of a high-temperature-steam-driven, varied-pressure, humidification–dehumidification system coupled with reverse osmosis," Applied Energy, Elsevier, vol. 103(C), pages 552-561.
- Abedi, Mahyar & Tan, Xu & Klausner, James F. & Bénard, Andre, 2023. "Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems," Renewable Energy, Elsevier, vol. 202(C), pages 88-102.
- Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
- Luberti, Mauro & Gowans, Robert & Finn, Patrick & Santori, Giulio, 2022. "An estimate of the ultralow waste heat available in the European Union," Energy, Elsevier, vol. 238(PC).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
- Sadeghi, Mohsen & Yari, Mortaza & Mahmoudi, S.M.S. & Jafari, Moharram, 2017. "Thermodynamic analysis and optimization of a novel combined power and ejector refrigeration cycle – Desalination system," Applied Energy, Elsevier, vol. 208(C), pages 239-251.
- Qureshi, Bilal Ahmed & Zubair, Syed M., 2015. "Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems," Energy, Elsevier, vol. 93(P1), pages 256-265.
- Qasem, Naef A.A. & Zubair, Syed M. & Abdallah, Ayman M. & Elbassoussi, Muhammad H. & Ahmed, Mohamed A., 2020. "Novel and efficient integration of a humidification-dehumidification desalination system with an absorption refrigeration system," Applied Energy, Elsevier, vol. 263(C).
- Huang, Xin & Ke, Tingfen & Yu, Xiangqian & Liu, Weihong & Li, Yang & Ling, Xiang, 2020. "Pressure drop modeling and performance optimization of a humidification–dehumidification desalination system," Applied Energy, Elsevier, vol. 258(C).
- Sayyaadi, Hoseyn & Ghorbani, Ghadir, 2018. "Conceptual design and optimization of a small-scale dual power-desalination system based on the Stirling prime-mover," Applied Energy, Elsevier, vol. 223(C), pages 457-471.
- Elhenawy, Yasser & Bassyouni, Mohamed & Fouad, Kareem & Sandid, Abdelfatah Marni & Abu-Zeid, Mostafa Abd El-Rady & Majozi, Thokozani, 2023. "Experimental and numerical simulation of solar membrane distillation and humidification – dehumidification water desalination system," Renewable Energy, Elsevier, vol. 215(C).
- Giwa, Adewale & Akther, Nawshad & Housani, Amna Al & Haris, Sabeera & Hasan, Shadi Wajih, 2016. "Recent advances in humidification dehumidification (HDH) desalination processes: Improved designs and productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 929-944.
- Rasikh Tariq & Jacinto Torres Jimenez & Nadeem Ahmed Sheikh & Sohail Khan, 2020. "Mathematical Approach to Improve the Thermoeconomics of a Humidification Dehumidification Solar Desalination System," Mathematics, MDPI, vol. 9(1), pages 1-31, December.
- Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
- Al-Nimr, Moh’d A. & Al-Ammari, Wahib A., 2020. "A novel hybrid and interactive solar system consists of Stirling engine ̸vacuum evaporator ̸thermoelectric cooler for electricity generation and water distillation," Renewable Energy, Elsevier, vol. 153(C), pages 1053-1066.
- Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
- Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
- Wang, Qiushi & Liang, Shen & Zhu, Ziye & Wu, Gang & Su, Yuehong & Zheng, Hongfei, 2019. "Performance of seawater-filling type planting system based on solar distillation process: Numerical and experimental investigation," Applied Energy, Elsevier, vol. 250(C), pages 1225-1234.
- Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
- Zhuo Wang & Yanjie Zhang & Tao Wang & Bo Zhang & Hongwen Ma, 2021. "Design and Energy Consumption Analysis of Small Reverse Osmosis Seawater Desalination Equipment," Energies, MDPI, vol. 14(8), pages 1-18, April.
- Hossein Yousefi & Mohamad Aramesh & Bahman Shabani, 2021. "Design Parameters of a Double-Slope Solar Still: Modelling, Sensitivity Analysis, and Optimization," Energies, MDPI, vol. 14(2), pages 1-23, January.
- El-Agouz, S.A. & Abd El-Aziz, G.B. & Awad, A.M., 2014. "Solar desalination system using spray evaporation," Energy, Elsevier, vol. 76(C), pages 276-283.
- Elsayed, Ahmed M. & Gaheen, Osama A. & Abdelrahman, M.A. & Aziz, Mohamed A., 2024. "An experimental investigation of a solar chimney integrated with a bladeless wind turbine for sustainable energy harvesting," Energy, Elsevier, vol. 304(C).
- Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
More about this item
Keywords
humidification–dehumidification; low-carbon desalination; variable pressure; vacuum; water adsorption; bubble column; solar energy; waste heat;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6352-:d:1231433. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.