IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp112-123.html
   My bibliography  Save this article

Potential of greenhouse gas emission reduction in Thai road transport by ethanol bus technology

Author

Listed:
  • Chollacoop, Nuwong
  • Saisirirat, Peerawat
  • Sukkasi, Sittha
  • Tongroon, Manida
  • Fukuda, Tuenjai
  • Fukuda, Atsushi
  • Nivitchanyong, Siriluck

Abstract

Over decades, Thailand energy consumption has been concentrated in three main sectors, namely manufacturing, power and transportation. Energy consumption in transportation sector has also been dominated by road transport due to limited coverage by rail and water transportation. Hence, road transport has been a major contributor for greenhouse gas emission in Thailand over recent years. Along with global warming concern throughout the world, Thailand has taken various adaptation and mitigation measures, especially the strong policy push to use carbon–neutral biofuel in transportation sector due to Thailand competitive advantage in agriculture sector. National Renewable Energy Plan (2008–2022) has set challenging targets of 9 and 4.5 million liters/day of ethanol and biodiesel consumption by 2022, respectively. Various blends of ethanol in gasoline (10%, 20% and 85%) and biodiesel in diesel (up to 5%) have been commercially available. However, since current consumption of diesel is twice as much of gasoline, ethanol blend in gasoline would widen the imbalance consumption of gasoline and diesel. The present study however offers an insight into a possibility to use ethanol as diesel substitute. A case study of ethanol bus technology was investigated by recourse to energy demand modeling. Necessary data, such as a number of vehicles (NVs) for various vehicle types, vehicle kilometer of travel (VKT) and fuel economy (FE) were collected, with reasonable assumptions made for those unavailable data, to construct predicative energy demand model. Scenario analysis on ethanol bus introduction was conducted to assess reduction of fossil fuel and greenhouse gas emission by increasing the use of ethanol to achieve ethanol consumption target in 2022. Successful demonstration of ethanol bus operation in Thailand will be briefly mentioned to give confidence for larger project implementation in the future.

Suggested Citation

  • Chollacoop, Nuwong & Saisirirat, Peerawat & Sukkasi, Sittha & Tongroon, Manida & Fukuda, Tuenjai & Fukuda, Atsushi & Nivitchanyong, Siriluck, 2013. "Potential of greenhouse gas emission reduction in Thai road transport by ethanol bus technology," Applied Energy, Elsevier, vol. 102(C), pages 112-123.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:112-123
    DOI: 10.1016/j.apenergy.2012.07.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912005612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.07.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Srikaew, Artit, 2011. "Projection of future transport energy demand of Thailand," Energy Policy, Elsevier, vol. 39(5), pages 2754-2763, May.
    2. Tanatvanit, Somporn & Limmeechokchai, Bundit & Chungpaibulpatana, Supachart, 2003. "Sustainable energy development strategies: implications of energy demand management and renewable energy in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 367-395, October.
    3. Nguyen, Thu Lan T. & Gheewala, Shabbir H. & Garivait, Savitri, 2008. "Full chain energy analysis of fuel ethanol from cane molasses in Thailand," Applied Energy, Elsevier, vol. 85(8), pages 722-734, August.
    4. Nguyen, Thu Lan Thi & Gheewala, Shabbir H. & Garivait, Savitri, 2007. "Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand," Energy Policy, Elsevier, vol. 35(9), pages 4585-4596, September.
    5. Silalertruksa, Thapat & Gheewala, Shabbir H., 2009. "Environmental sustainability assessment of bio-ethanol production in Thailand," Energy, Elsevier, vol. 34(11), pages 1933-1946.
    6. Nguyen, Thu Lan T. & Gheewala, Shabbir H. & Garivait, Savitri, 2007. "Fossil energy savings and GHG mitigation potentials of ethanol as a gasoline substitute in Thailand," Energy Policy, Elsevier, vol. 35(10), pages 5195-5205, October.
    7. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    8. Kamimura, Arlindo & Sauer, Ildo L., 2008. "The effect of flex fuel vehicles in the Brazilian light road transportation," Energy Policy, Elsevier, vol. 36(4), pages 1574-1576, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    2. Juliano da Silva PEREIRA & Tatiana Maria Cecy GADDA & Eduardo Cesar AMANCIO & Jair URBANETZ JÚNIOR & Janine Nicolosi CORRÊA & Thiago Carvalho dos Reis SILVEIRA, 2021. "An Energy Transition Analysis For A Public Transit Bus System," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 16(3), pages 53-72, August.
    3. Odziemkowska, Małgorzata & Matuszewska, Anna & Czarnocka, Joanna, 2016. "Diesel oil with bioethanol as a fuel for compression-ignition engines," Applied Energy, Elsevier, vol. 184(C), pages 1264-1272.
    4. Nadaletti, W.C. & Cremonez, P.A. & de Souza, S.N.M. & Bariccatti, R.A. & Belli Filho, P. & Secco, D., 2015. "Potential use of landfill biogas in urban bus fleet in the Brazilian states: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 277-283.
    5. Guo, Junyan & Gao, Ruihong & Tong, Zhaoming & Zhang, Haijun & Duan, Hongjuan & Huang, Liang & Lu, Lilin & Jia, Quanli & Zhang, Shaowei, 2023. "Three eagles with one arrow: Simultaneous production of hydrogen, aluminum ethoxide, and supported metal catalysts via efficient and facile reaction between aluminum and ethanol," Energy, Elsevier, vol. 263(PD).
    6. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatiwada, Dilip & Venkata, Bharadwaj K. & Silveira, Semida & Johnson, Francis X., 2016. "Energy and GHG balances of ethanol production from cane molasses in Indonesia," Applied Energy, Elsevier, vol. 164(C), pages 756-768.
    2. Silalertruksa, Thapat & Gheewala, Shabbir H., 2009. "Environmental sustainability assessment of bio-ethanol production in Thailand," Energy, Elsevier, vol. 34(11), pages 1933-1946.
    3. Kannika Duangnate & James W. Mjelde, 2022. "The Role of Pre-Commitments and Engle Curves in Thailand’s Aggregate Energy Demand System," Energies, MDPI, vol. 15(4), pages 1-16, February.
    4. Phdungsilp, Aumnad & Wuttipornpun, Teeradej, 2013. "Analyses of the decarbonizing Thailand's energy system toward low-carbon futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 187-197.
    5. Liu, Beibei & Wang, Feng & Zhang, Bing & Bi, Jun, 2013. "Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China," Energy Policy, Elsevier, vol. 56(C), pages 210-220.
    6. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit, 2015. "Low carbon society scenario analysis of transport sector of an emerging economy—The AIM/Enduse modelling approach," Energy Policy, Elsevier, vol. 81(C), pages 199-214.
    7. Sadri, A. & Ardehali, M.M. & Amirnekooei, K., 2014. "General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN," Energy, Elsevier, vol. 77(C), pages 831-843.
    8. Khatiwada, Dilip & Silveira, Semida, 2009. "Net energy balance of molasses based ethanol: The case of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2515-2524, December.
    9. Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2017. "The policy recommendations on cassava ethanol in China: Analyzed from the perspective of life cycle “2E&W”," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 12-24.
    10. Chauhan, Manish Kumar & Varun & Chaudhary, Sachin & Kumar, Suneel & Samar, 2011. "Life cycle assessment of sugar industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3445-3453, September.
    11. Yang, Q. & Chen, G.Q., 2012. "Nonrenewable energy cost of corn-ethanol in China," Energy Policy, Elsevier, vol. 41(C), pages 340-347.
    12. Nuwong Chollacoop & Peerawat Saisirirat & Tuenjai Fukuda & Atsushi Fukuda, 2011. "Scenario Analyses of Road Transport Energy Demand: A Case Study of Ethanol as a Diesel Substitute in Thailand," Energies, MDPI, vol. 4(1), pages 1-18, January.
    13. Eshton, Bilha & Katima, Jamidu H.Y., 2015. "Carbon footprints of production and use of liquid biofuels in Tanzania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 672-680.
    14. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Ma Teresa & Feijoo, Gumersindo, 2010. "Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe," Renewable Energy, Elsevier, vol. 35(5), pages 1014-1023.
    15. Silalertruksa, Thapat & Gheewala, Shabbir H., 2010. "Security of feedstocks supply for future bio-ethanol production in Thailand," Energy Policy, Elsevier, vol. 38(11), pages 7476-7486, November.
    16. Chiu, Chien-Liang & Chang, Ting-Huan, 2009. "What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1669-1674, August.
    17. Qodri Febrilian Erahman & Nadhilah Reyseliani & Widodo Wahyu Purwanto & Mahmud Sudibandriyo, 2019. "Modeling Future Energy Demand and CO 2 Emissions of Passenger Cars in Indonesia at the Provincial Level," Energies, MDPI, vol. 12(16), pages 1-25, August.
    18. Bastian, Anne & Börjesson, Maria, 2014. "It's the economy, stupid: increasing fuel price is enough to explain Peak Car in Sweden," Working papers in Transport Economics 2014:15, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    19. Wang, Rui & Yuan, Quan, 2013. "Parking practices and policies under rapid motorization: The case of China," Transport Policy, Elsevier, vol. 30(C), pages 109-116.
    20. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:112-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.