IDEAS home Printed from https://ideas.repec.org/a/rom/terumm/v16y2021i3p53-72.html
   My bibliography  Save this article

An Energy Transition Analysis For A Public Transit Bus System

Author

Listed:
  • Juliano da Silva PEREIRA

    (Federal University of Technology – ParanA, Curitiba, Brazil)

  • Tatiana Maria Cecy GADDA

    (Federal University of Technology – ParanA, Curitiba, Brazil)

  • Eduardo Cesar AMANCIO

    (Federal University of Technology – ParanA, Curitiba, Brazil)

  • Jair URBANETZ JÚNIOR

    (Federal University of Technology – ParanA, Curitiba, Brazil)

  • Janine Nicolosi CORRÊA

    (Federal University of Technology – ParanA, Curitiba, Brazil)

  • Thiago Carvalho dos Reis SILVEIRA

    (Federal University of Technology – ParanA, Curitiba, Brazil)

Abstract

Worldwide, Brazil is the seventh largest contributor to greenhouse gases emissions. Public transport, which is highly dependent on fossil fuels, accounts for 17% of all emissions from the Brazilian energy sector. This paper aims to identify the carbon dioxide emissions reduction potential by switching Curitiba's public transport bus fleet from diesel fueled buses to electric buses. The calculation, which was based on data collected from the system management company and from the literature, was applied into three scenarios. In the first, we estimate the system's CO2 emission for the current fuel choice, diesel; in the second, we consider the adoption of electric buses, by meeting the energy demand with the national energy matrix; and in the third, the demand would be fed by photovoltaic systems. The results indicated a CO2 emission reduction potential of about 81%, 90% and 93%, considering three different analysis: (1) buses energy demand supplied by the national electric matrix in a context of a rainfall worst-case; (2) buses energy demand supplied by the national electric matrix in a context of a rainfall best-case; and (3) energy demand supplied by solar energy. It would represent a reduction of, respectively, 68, 75 or 78 thousand tons of carbon dioxide emitted into the atmosphere per year. The results suggest that a switch from fossil fuel run buses to electric buses has a great potential to contribute to decarbonising transport, especially in cities with a large bus fleet and distance traveled.

Suggested Citation

  • Juliano da Silva PEREIRA & Tatiana Maria Cecy GADDA & Eduardo Cesar AMANCIO & Jair URBANETZ JÚNIOR & Janine Nicolosi CORRÊA & Thiago Carvalho dos Reis SILVEIRA, 2021. "An Energy Transition Analysis For A Public Transit Bus System," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 16(3), pages 53-72, August.
  • Handle: RePEc:rom:terumm:v:16:y:2021:i:3:p:53-72
    as

    Download full text from publisher

    File URL: http://um.ase.ro/no163/4.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chollacoop, Nuwong & Saisirirat, Peerawat & Sukkasi, Sittha & Tongroon, Manida & Fukuda, Tuenjai & Fukuda, Atsushi & Nivitchanyong, Siriluck, 2013. "Potential of greenhouse gas emission reduction in Thai road transport by ethanol bus technology," Applied Energy, Elsevier, vol. 102(C), pages 112-123.
    2. Baran, Renato & Legey, Luiz Fernando Loureiro, 2013. "The introduction of electric vehicles in Brazil: Impacts on oil and electricity consumption," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 907-917.
    3. Dorotić, Hrvoje & Doračić, Borna & Dobravec, Viktorija & Pukšec, Tomislav & Krajačić, Goran & Duić, Neven, 2019. "Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 109-124.
    4. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    4. Tao, Miaomiao, 2024. "Dynamics between electric vehicle uptake and green development: Understanding the role of local government competition," Transport Policy, Elsevier, vol. 146(C), pages 227-240.
    5. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    6. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    7. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    8. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    9. Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
    10. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    11. Pacheco, A. & Monteiro, J. & Santos, J. & Sequeira, C. & Nunes, J., 2022. "Energy transition process and community engagement on geographic islands: The case of Culatra Island (Ria Formosa, Portugal)," Renewable Energy, Elsevier, vol. 184(C), pages 700-711.
    12. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Saptarshi Das & Mehrdad Ehsani, 2022. "An Adaptable Net Zero Model: Energy Analysis of a Monitored Case Study," Energies, MDPI, vol. 15(11), pages 1-24, May.
    13. Mélanie Douziech & Romain Besseau & Raphaël Jolivet & Bianka Shoai‐Tehrani & Jean‐Yves Bourmaud & Guillaume Busato & Mathilde Gresset‐Bourgeois & Paula Pérez‐López, 2024. "Life cycle assessment of prospective trajectories: A parametric approach for tailor‐made inventories and its computational implementation," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 25-40, February.
    14. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    15. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    16. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. Ehrenstein, Michael & Galán-Martín, Ángel & Tulus, Victor & Guillén-Gosálbez, Gonzalo, 2020. "Optimising fuel supply chains within planetary boundaries: A case study of hydrogen for road transport in the UK," Applied Energy, Elsevier, vol. 276(C).
    18. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
    19. Zacharopoulos, Leon & Thonemann, Nils & Dumeier, Marcel & Geldermann, Jutta, 2023. "Environmental optimization of the charge of battery electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    20. Skvorčinskienė, R. & Striūgas, N. & Galinis, A. & Lekavičius, V. & Kurkela, E. & Kurkela, M. & Lukoševičius, R. & Radinas, M. & Šermukšnienė, A., 2022. "Renewable transport fuel production combined with cogeneration plant operation and waste heat recovery in district heating system," Renewable Energy, Elsevier, vol. 189(C), pages 952-969.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rom:terumm:v:16:y:2021:i:3:p:53-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Colesca Sofia (email available below). General contact details of provider: https://edirc.repec.org/data/ccasero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.