IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i1p108-125d10912.html
   My bibliography  Save this article

Scenario Analyses of Road Transport Energy Demand: A Case Study of Ethanol as a Diesel Substitute in Thailand

Author

Listed:
  • Nuwong Chollacoop

    (Bioenergy Laboratory, National Metal and Materials Technology Center (MTEC), Pathumthani 12120, Thailand)

  • Peerawat Saisirirat

    (Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand)

  • Tuenjai Fukuda

    (Asian Transportation Research Society (ATRANS), Bangkok 10110, Thailand
    Department of Transportation Engineering and Socio-Technology, College of Science and Technology, Nihon University, Chiba 274-8501, Japan)

  • Atsushi Fukuda

    (Asian Transportation Research Society (ATRANS), Bangkok 10110, Thailand
    Department of Transportation Engineering and Socio-Technology, College of Science and Technology, Nihon University, Chiba 274-8501, Japan)

Abstract

Ethanol is conventionally used as a blend with gasoline due to its similar properties, especially the octane number. However, ethanol has also been explored and used as a diesel substitute. While a low-blend of ethanol with diesel is possible with use of an emulsifier additive, a high-blend of ethanol with diesel may require major adjustment of compression-ignition (CI) diesel engines. Since dedicated CI engines are commercially available for a high-blend ethanol in diesel (ED95), a fuel mixture comprised of 95% ethanol and 5% additive, this technology offers an option for an oil-importing country like Thailand to reduce its fossil import by use of its own indigenous bio-ethanol fuel. Among many strong campaigns on ethanol utilization in the transportation sector under Thailand’s Alternative Energy Strategic Plan (2008–2022), the Thai Ministry of Energy has, for the first time, conducted a demonstration project with ethanol (ED95) buses on the Thai road system. The current investigation thus aims to assess and quantify the impact of using this ED95 technology to reduce fossil diesel consumption by adjusting the commercially available energy demand model called the Long range Energy Alternatives Planning system (LEAP). For this purpose, first, the necessary statistical data in the Thai transportation sector were gathered and analyzed to construct the predicative energy demand model. Then, scenario analyses were conducted to assess the benefit of ED95 technology on the basis of energy efficiency and greenhouse gas emission reduction.

Suggested Citation

  • Nuwong Chollacoop & Peerawat Saisirirat & Tuenjai Fukuda & Atsushi Fukuda, 2011. "Scenario Analyses of Road Transport Energy Demand: A Case Study of Ethanol as a Diesel Substitute in Thailand," Energies, MDPI, vol. 4(1), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:1:p:108-125:d:10912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/1/108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/1/108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tanatvanit, Somporn & Limmeechokchai, Bundit & Chungpaibulpatana, Supachart, 2003. "Sustainable energy development strategies: implications of energy demand management and renewable energy in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 367-395, October.
    2. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan & Guo, Qingfang, 2009. "Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 197-208, November.
    3. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    4. Shrestha, Ram M. & Malla, Sunil & Liyanage, Migara H., 2007. "Scenario-based analyses of energy system development and its environmental implications in Thailand," Energy Policy, Elsevier, vol. 35(6), pages 3179-3193, June.
    5. Limmeechokchai, Bundit & Chawana, Saichit, 2007. "Sustainable energy development strategies in the rural Thailand: The case of the improved cooking stove and the small biogas digester," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 818-837, June.
    6. Phdungsilp, Aumnad, 2010. "Integrated energy and carbon modeling with a decision support system: Policy scenarios for low-carbon city development in Bangkok," Energy Policy, Elsevier, vol. 38(9), pages 4808-4817, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Gerber Machado & Ana Carolina Rodrigues Teixeira & Flavia Mendes de Almeida Collaço & Adam Hawkes & Dominique Mouette, 2020. "Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case Study for São Paulo State, Brazil," Energies, MDPI, vol. 13(20), pages 1-26, October.
    2. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit, 2015. "Low carbon society scenario analysis of transport sector of an emerging economy—The AIM/Enduse modelling approach," Energy Policy, Elsevier, vol. 81(C), pages 199-214.
    3. Dennis Dreier & Mark Howells, 2019. "OSeMOSYS-PuLP: A Stochastic Modeling Framework for Long-Term Energy Systems Modeling," Energies, MDPI, vol. 12(7), pages 1-26, April.
    4. Madhavi Latha Gandla & Carlos Martín & Leif J. Jönsson, 2018. "Analytical Enzymatic Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio-Based Chemicals," Energies, MDPI, vol. 11(11), pages 1-20, October.
    5. Phdungsilp, Aumnad & Wuttipornpun, Teeradej, 2013. "Analyses of the decarbonizing Thailand's energy system toward low-carbon futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 187-197.
    6. Maria La Gennusa & Patrizia Ferrante & Barbara Lo Casto & Gianfranco Rizzo, 2015. "An Integrated Environmental Indicator for Urban Transportation Systems: Description and Application," Energies, MDPI, vol. 8(10), pages 1-19, October.
    7. Kannika Duangnate & James W. Mjelde, 2022. "The Role of Pre-Commitments and Engle Curves in Thailand’s Aggregate Energy Demand System," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sk Uddin & Ros Taplin & Xiaojiang Yu, 2010. "Towards a sustainable energy future—exploring current barriers and potential solutions in Thailand," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(1), pages 63-87, February.
    2. Phdungsilp, Aumnad & Wuttipornpun, Teeradej, 2013. "Analyses of the decarbonizing Thailand's energy system toward low-carbon futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 187-197.
    3. Janthana Kunchornrat & Aumnad Phdungsilp, 2012. "Multi-Level Governance of Low-Carbon Energy Systems in Thailand," Energies, MDPI, vol. 5(3), pages 1-14, February.
    4. Chollacoop, Nuwong & Saisirirat, Peerawat & Sukkasi, Sittha & Tongroon, Manida & Fukuda, Tuenjai & Fukuda, Atsushi & Nivitchanyong, Siriluck, 2013. "Potential of greenhouse gas emission reduction in Thai road transport by ethanol bus technology," Applied Energy, Elsevier, vol. 102(C), pages 112-123.
    5. Kannika Duangnate & James W. Mjelde, 2022. "The Role of Pre-Commitments and Engle Curves in Thailand’s Aggregate Energy Demand System," Energies, MDPI, vol. 15(4), pages 1-16, February.
    6. Dong, Cong & Huang, Guohe & Cai, Yanpeng & Li, Wei & Cheng, Guanhui, 2014. "Fuzzy interval programming for energy and environmental systems management under constraint-violation and energy-substitution effects: A case study for the City of Beijing," Energy Economics, Elsevier, vol. 46(C), pages 375-394.
    7. Shrestha, Ram M. & Pradhan, Shreekar, 2010. "Co-benefits of CO2 emission reduction in a developing country," Energy Policy, Elsevier, vol. 38(5), pages 2586-2597, May.
    8. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit, 2015. "Low carbon society scenario analysis of transport sector of an emerging economy—The AIM/Enduse modelling approach," Energy Policy, Elsevier, vol. 81(C), pages 199-214.
    9. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    10. Chiu, Chien-Liang & Chang, Ting-Huan, 2009. "What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1669-1674, August.
    11. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
    12. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    13. Qodri Febrilian Erahman & Nadhilah Reyseliani & Widodo Wahyu Purwanto & Mahmud Sudibandriyo, 2019. "Modeling Future Energy Demand and CO 2 Emissions of Passenger Cars in Indonesia at the Provincial Level," Energies, MDPI, vol. 12(16), pages 1-25, August.
    14. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    15. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    16. Feng, Changling & E, Jiaqiang & Kou, Chuanfu & Han, Dandan & Han, Chang & Tan, Yan & Deng, Yuanwang, 2024. "Investigation on the hydrocarbon adsorption performance enhancement of the ZSM-5 zeolite with different Si/Al ratio in the cold start process of the gasoline engine," Energy, Elsevier, vol. 300(C).
    17. Meyer, Ina & Kaniovski, Serguei & Scheffran, Jürgen, 2012. "Scenarios for regional passenger car fleets and their CO2 emissions," Energy Policy, Elsevier, vol. 41(C), pages 66-74.
    18. S. R. Milyakin, 2023. "Motorization: History, Factors and Patterns," Studies on Russian Economic Development, Springer, vol. 34(2), pages 254-262, April.
    19. Bastian, Anne & Börjesson, Maria, 2014. "It's the economy, stupid: increasing fuel price is enough to explain Peak Car in Sweden," Working papers in Transport Economics 2014:15, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    20. Hatayama, Hiroki & Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2012. "Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 8-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:1:p:108-125:d:10912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.