IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i5p1014-1023.html
   My bibliography  Save this article

Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe

Author

Listed:
  • González-García, Sara
  • Gasol, Carles M.
  • Gabarrell, Xavier
  • Rieradevall, Joan
  • Moreira, Ma Teresa
  • Feijoo, Gumersindo

Abstract

Liquid biofuels provide one of the few options for fossil fuel substitution in the short to medium-term and they are strongly being promoted by the European Union as transport fuel (such as ethanol) since they have the potential to offer both greenhouse gas (GHG) savings and energy security. A “well to wheel” analysis has been conducted for poplar based ethanol by means of the Life Cycle Assessment (LCA) approach. The aim of the analysis is to assess the environmental performance of three ethanol applications (E10, E85 and E100) in comparison with conventional gasoline. To compare the environmental profiles, the study addressed the impact potentials per kilometre driven by a middle size passenger car, taking into account the performance difference between ethanol blends and gasoline. According to the results of this study, fuel ethanol derived from poplar biomass may help to reduce the contributions to global warming, abiotic resources depletion and ozone layer depletion up to 62%, 72% and 36% respectively. Reductions of fossil fuel extraction of up to 80% could be achieved when pure ethanol is used. On the contrary, contributions to other impact categories would be increased, specifically to acidification and eutrophication. In both categories, ethanol based blends are less environmentally friendly than conventional gasoline due to the higher impact from the upstream activities. Research focussed on the reduction of the environmental impacts should be pointed forward poplar cultivation as well as ethanol conversion plant (enzyme manufacturing, energy production and distillation). In this study poplar cultivation was really intensive in order to obtain a high yield. Strategic planning according to the location of the crops and its requirements should help to reduce these impacts from its cultivation.

Suggested Citation

  • González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Ma Teresa & Feijoo, Gumersindo, 2010. "Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe," Renewable Energy, Elsevier, vol. 35(5), pages 1014-1023.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:5:p:1014-1023
    DOI: 10.1016/j.renene.2009.10.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109004558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.10.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Mª Teresa & Feijoo, Gumersindo, 2009. "Environmental aspects of ethanol-based fuels from Brassica carinata: A case study of second generation ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2613-2620, December.
    2. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "An energy analysis of ethanol from cellulosic feedstock-Corn stover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2003-2011, October.
    3. Taylor, Gail, 2008. "Biofuels and the biorefinery concept," Energy Policy, Elsevier, vol. 36(12), pages 4406-4409, December.
    4. Ryan, Lisa & Convery, Frank & Ferreira, Susana, 2006. "Stimulating the use of biofuels in the European Union: Implications for climate change policy," Energy Policy, Elsevier, vol. 34(17), pages 3184-3194, November.
    5. Niven, Robert K., 2005. "Ethanol in gasoline: environmental impacts and sustainability review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 535-555, December.
    6. Nonhebel, Sanderine, 2005. "Renewable energy and food supply: will there be enough land?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 191-201, April.
    7. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Yusaf, T., 2009. "Potential of bioethanol production from agricultural wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1418-1427, August.
    8. González-García, Sara & Luo, Lin & Moreira, Mª Teresa & Feijoo, Gumersindo & Huppes, Gjalt, 2009. "Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1922-1933, October.
    9. Gasol, Carles M. & Martínez, Sergio & Rigola, Miquel & Rieradevall, Joan & Anton, Assumpció & Carrasco, Juan & Ciria, Pilar & Gabarrell, Xavier, 2009. "Feasibility assessment of poplar bioenergy systems in the Southern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 801-812, May.
    10. Nguyen, Thu Lan T. & Gheewala, Shabbir H. & Garivait, Savitri, 2008. "Full chain energy analysis of fuel ethanol from cane molasses in Thailand," Applied Energy, Elsevier, vol. 85(8), pages 722-734, August.
    11. Nguyen, Thu Lan T. & Gheewala, Shabbir H., 2008. "Fuel ethanol from cane molasses in Thailand: Environmental and cost performance," Energy Policy, Elsevier, vol. 36(5), pages 1589-1599, May.
    12. Nguyen, Thu Lan T. & Gheewala, Shabbir H. & Garivait, Savitri, 2007. "Fossil energy savings and GHG mitigation potentials of ethanol as a gasoline substitute in Thailand," Energy Policy, Elsevier, vol. 35(10), pages 5195-5205, October.
    13. Tan, Kok Tat & Lee, Keat Teong & Mohamed, Abdul Rahman, 2008. "Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol," Energy Policy, Elsevier, vol. 36(9), pages 3360-3365, September.
    14. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1613-1619, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morales, Marjorie & Quintero, Julián & Conejeros, Raúl & Aroca, Germán, 2015. "Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1349-1361.
    2. Reyes Valle, C. & Villanueva Perales, A.L. & Vidal-Barrero, F. & Ollero, P., 2015. "Integrated economic and life cycle assessment of thermochemical production of bioethanol to reduce production cost by exploiting excess of greenhouse gas savings," Applied Energy, Elsevier, vol. 148(C), pages 466-475.
    3. Dufour, Javier & Iribarren, Diego, 2012. "Life cycle assessment of biodiesel production from free fatty acid-rich wastes," Renewable Energy, Elsevier, vol. 38(1), pages 155-162.
    4. Carneiro, Maria Luisa N.M. & Pradelle, Florian & Braga, Sergio L. & Gomes, Marcos Sebastião P. & Martins, Ana Rosa F.A. & Turkovics, Franck & Pradelle, Renata N.C., 2017. "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 632-653.
    5. Jafari, Vahid & Labafzadeh, Sara Rahim & Jeihanipour, Azam & Karimi, Keikhosro & Taherzadeh, Mohammad J., 2011. "Construction and demolition lignocellulosic wastes to bioethanol," Renewable Energy, Elsevier, vol. 36(11), pages 2771-2775.
    6. Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.
    7. Forte, Annachiara & Zucaro, Amalia & Faugno, Salvatore & Basosi, Riccardo & Fierro, Angelo, 2018. "Carbon footprint and fossil energy consumption of bio-ethanol fuel production from Arundo donax L. crops on marginal lands of Southern Italy," Energy, Elsevier, vol. 150(C), pages 222-235.
    8. Puricelli, S. & Cardellini, G. & Casadei, S. & Faedo, D. & van den Oever, A.E.M. & Grosso, M., 2021. "A review on biofuels for light-duty vehicles in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Testa, Riccardo & Di Trapani, Anna Maria & Foderà, Mario & Sgroi, Filippo & Tudisca, Salvatore, 2014. "Economic evaluation of introduction of poplar as biomass crop in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 775-780.
    10. Wiloso, Edi Iswanto & Heijungs, Reinout & de Snoo, Geert R., 2012. "LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5295-5308.
    11. Borrion, Aiduan Li & McManus, Marcelle C. & Hammond, Geoffrey P., 2012. "Environmental life cycle assessment of lignocellulosic conversion to ethanol: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4638-4650.
    12. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    13. Pérez-López, Paula & Gasol, Carles M. & Oliver-Solà, Jordi & Huelin, Sagrario & Moreira, Ma Teresa & Feijoo, Gumersindo, 2013. "Greenhouse gas emissions from Spanish motorway transport: Key aspects and mitigation solutions," Energy Policy, Elsevier, vol. 60(C), pages 705-713.
    14. Menten, Fabio & Chèze, Benoît & Patouillard, Laure & Bouvart, Frédérique, 2013. "A review of LCA greenhouse gas emissions results for advanced biofuels: The use of meta-regression analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 108-134.
    15. Daylan, B. & Ciliz, N., 2016. "Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel," Renewable Energy, Elsevier, vol. 89(C), pages 578-587.
    16. Mariusz Jerzy Stolarski & Kazimierz Warmiński & Michał Krzyżaniak, 2020. "Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland," Energies, MDPI, vol. 13(6), pages 1-13, March.
    17. Singh, Renu & Srivastava, Monika & Shukla, Ashish, 2016. "Environmental sustainability of bioethanol production from rice straw in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 202-216.
    18. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-García, Sara & Moreira, M. Teresa & Feijoo, Gumersindo, 2010. "Comparative environmental performance of lignocellulosic ethanol from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2077-2085, September.
    2. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Mª Teresa & Feijoo, Gumersindo, 2009. "Environmental aspects of ethanol-based fuels from Brassica carinata: A case study of second generation ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2613-2620, December.
    3. Chauhan, Manish Kumar & Varun & Chaudhary, Sachin & Kumar, Suneel & Samar, 2011. "Life cycle assessment of sugar industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3445-3453, September.
    4. Daylan, B. & Ciliz, N., 2016. "Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel," Renewable Energy, Elsevier, vol. 89(C), pages 578-587.
    5. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    6. González-García, Sara & Luo, Lin & Moreira, Mª Teresa & Feijoo, Gumersindo & Huppes, Gjalt, 2009. "Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1922-1933, October.
    7. Wiloso, Edi Iswanto & Heijungs, Reinout & de Snoo, Geert R., 2012. "LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5295-5308.
    8. Borrion, Aiduan Li & McManus, Marcelle C. & Hammond, Geoffrey P., 2012. "Environmental life cycle assessment of lignocellulosic conversion to ethanol: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4638-4650.
    9. Adekunle, Ademola & Orsat, Valerie & Raghavan, Vijaya, 2016. "Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 518-530.
    10. Yang, Q. & Chen, G.Q., 2012. "Nonrenewable energy cost of corn-ethanol in China," Energy Policy, Elsevier, vol. 41(C), pages 340-347.
    11. Kumar, S. & Shrestha, Pujan & Abdul Salam, P., 2013. "A review of biofuel policies in the major biofuel producing countries of ASEAN: Production, targets, policy drivers and impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 822-836.
    12. Robèrt, Markus & Hultén, Per & Frostell, Björn, 2007. "Biofuels in the energy transition beyond peak oil," Energy, Elsevier, vol. 32(11), pages 2089-2098.
    13. Khatiwada, Dilip & Venkata, Bharadwaj K. & Silveira, Semida & Johnson, Francis X., 2016. "Energy and GHG balances of ethanol production from cane molasses in Indonesia," Applied Energy, Elsevier, vol. 164(C), pages 756-768.
    14. Silalertruksa, Thapat & Gheewala, Shabbir H., 2009. "Environmental sustainability assessment of bio-ethanol production in Thailand," Energy, Elsevier, vol. 34(11), pages 1933-1946.
    15. Noel, Michael D. & Roach, Travis, 2017. "Marginal reductions in vehicle emissions under a dual-blend ethanol mandate: Evidence from a natural experiment," Energy Economics, Elsevier, vol. 64(C), pages 45-54.
    16. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    17. Rendon-Sagardi, Miguel A. & Sanchez-Ramirez, Cuauhtemoc & Cortes-Robles, Guillermo & Alor-Hernandez, Giner & Cedillo-Campos, Miguel G., 2014. "Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico," Applied Energy, Elsevier, vol. 123(C), pages 358-367.
    18. Khatiwada, Dilip & Silveira, Semida, 2009. "Net energy balance of molasses based ethanol: The case of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2515-2524, December.
    19. Cruz Jr., Jose B. & Tan, Raymond R. & Culaba, Alvin B. & Ballacillo, Jo-Anne, 2009. "A dynamic input-output model for nascent bioenergy supply chains," Applied Energy, Elsevier, vol. 86(Supplemen), pages 86-94, November.
    20. Chollacoop, Nuwong & Saisirirat, Peerawat & Sukkasi, Sittha & Tongroon, Manida & Fukuda, Tuenjai & Fukuda, Atsushi & Nivitchanyong, Siriluck, 2013. "Potential of greenhouse gas emission reduction in Thai road transport by ethanol bus technology," Applied Energy, Elsevier, vol. 102(C), pages 112-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:5:p:1014-1023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.