IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp1105-1113.html
   My bibliography  Save this article

Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment

Author

Listed:
  • Monlau, Florian
  • Latrille, Eric
  • Da Costa, Aline Carvalho
  • Steyer, Jean-Philippe
  • Carrère, Hélène

Abstract

The conversion of sunflower oil cake (SOC) into methane by mesophilic anaerobic digestion was the object of this study. The effect of a combined dilute acid-thermal pretreatment (acid concentration and temperature) on solubilisation and methane potential was investigated using a central composite design (CCD). For temperatures up to 170°C, solubilisation of each parameter (total organic carbon, sugars and proteins) increased with the severity of the pretreatment (high temperature and high acid concentration). Methane production was higher for pre-treated samples than for the untreated samples (195mL CH4/gVS). The highest yield (302±10mL CH4/gVS) was obtained after acid pretreatment at 170°C. At this temperature, acid concentrations lower than 1% had no significant impact on methane production in comparison to thermal treatment alone. The volume of methane produced by the soluble fraction reached more than 60% of total methane production. An increase in methane production was correlated to the concentration of organic carbon in the liquid phase of samples pretreated at 130–170°C with acid. At temperatures higher than 170°C, some recalcitrant compounds were formed in the liquid phase.

Suggested Citation

  • Monlau, Florian & Latrille, Eric & Da Costa, Aline Carvalho & Steyer, Jean-Philippe & Carrère, Hélène, 2013. "Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment," Applied Energy, Elsevier, vol. 102(C), pages 1105-1113.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1105-1113
    DOI: 10.1016/j.apenergy.2012.06.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912004874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.06.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kivaisi, Amelia K. & Eliapenda, S., 1994. "Pretreatment of bagasse and coconut fibres for enhanced anaerobic degradation by rumen microorganisms," Renewable Energy, Elsevier, vol. 5(5), pages 791-795.
    2. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production," Applied Energy, Elsevier, vol. 94(C), pages 129-140.
    3. Achten, Wouter M.J. & Almeida, Joana & Fobelets, Vincent & Bolle, Evelien & Mathijs, Erik & Singh, Virendra P. & Tewari, Dina N. & Verchot, Louis V. & Muys, Bart, 2010. "Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India," Applied Energy, Elsevier, vol. 87(12), pages 3652-3660, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaohua & Zhang, YaLei & Gu, Yu & Liu, Zhanguang & Shen, Zheng & Chu, Huaqiang & Zhou, Xuefei, 2014. "Enhancing methane production from rice straw by extrusion pretreatment," Applied Energy, Elsevier, vol. 122(C), pages 34-41.
    2. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    3. Ester Foppa Pedretti & Andrea Del Gatto & Sandro Pieri & Lorella Mangoni & Alessio Ilari & Manuela Mancini & Gabriele Feliciangeli & Elena Leoni & Giuseppe Toscano & Daniele Duca, 2019. "Experimental Study to Support Local Sunflower Oil Chains: Production of Cold Pressed Oil in Central Italy," Agriculture, MDPI, vol. 9(11), pages 1-12, October.
    4. Zou, Shuzhen & Wang, Hui & Wang, Xiaojiao & Zhou, Sha & Li, Xue & Feng, Yongzhong, 2016. "Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion," Applied Energy, Elsevier, vol. 179(C), pages 191-202.
    5. De Sanctis, M. & Chimienti, S. & Pastore, C. & Piergrossi, V. & Di Iaconi, C., 2019. "Energy efficiency improvement of thermal hydrolysis and anaerobic digestion of Posidonia oceanica residues," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Akhilesh Kumar Singh & Priti Pal & Saurabh Singh Rathore & Uttam Kumar Sahoo & Prakash Kumar Sarangi & Piotr Prus & Paweł Dziekański, 2023. "Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements," Energies, MDPI, vol. 16(14), pages 1-22, July.
    7. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    8. Sambusiti, C. & Monlau, F. & Ficara, E. & Carrère, H. & Malpei, F., 2013. "A comparison of different pre-treatments to increase methane production from two agricultural substrates," Applied Energy, Elsevier, vol. 104(C), pages 62-70.
    9. Patil, Ravichandra & Cimon, Caroline & Eskicioglu, Cigdem & Goud, Vaibhav, 2021. "Effect of ozonolysis and thermal pre-treatment on rice straw hydrolysis for the enhancement of biomethane production," Renewable Energy, Elsevier, vol. 179(C), pages 467-474.
    10. Li, Wei & Guo, Jianbin & Cheng, Huicai & Wang, Wei & Dong, Renjie, 2017. "Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation," Applied Energy, Elsevier, vol. 189(C), pages 613-622.
    11. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    12. Gupta, Aditi & Kumar, Ashwani & Sharma, Satyawati & Vijay, V.K., 2013. "Comparative evaluation of raw and detoxified mahua seed cake for biogas production," Applied Energy, Elsevier, vol. 102(C), pages 1514-1521.
    13. Qyyum, Muhammad Abdul & Ali Shah, Syed Fahad & Qadeer, Kinza & Naquash, Ahmad & Yasin, Muhammad & Rehan, Mohammad & Tabatabaei, Meisam & Aghbashlo, Mortaza & Lee, Moonyong & Nizami, Abdul-Sattar, 2022. "Biowaste to bioenergy options for sustainable economic growth opportunities in developing countries: Product space model analysis and policy map development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    14. Triolo, Jin M. & Ward, Alastair J. & Pedersen, Lene & Løkke, Mette M. & Qu, Haiyan & Sommer, Sven G., 2014. "Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass," Applied Energy, Elsevier, vol. 116(C), pages 52-57.
    15. Elsamadony, M. & Tawfik, A. & Suzuki, M., 2015. "Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion," Applied Energy, Elsevier, vol. 149(C), pages 272-282.
    16. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    17. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    18. Passos, Fabiana & Solé, Maria & García, Joan & Ferrer, Ivet, 2013. "Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment," Applied Energy, Elsevier, vol. 108(C), pages 168-175.
    19. Mariana Ferdeș & Bianca Ștefania Zăbavă & Gigel Paraschiv & Mariana Ionescu & Mirela Nicoleta Dincă & Georgiana Moiceanu, 2022. "Food Waste Management for Biogas Production in the Context of Sustainable Development," Energies, MDPI, vol. 15(17), pages 1-27, August.
    20. Anna Nowicka & Marcin Zieliński & Marcin Dębowski & Magda Dudek, 2021. "Progress in the Production of Biogas from Maize Silage after Acid-Heat Pretreatment," Energies, MDPI, vol. 14(23), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Portugal-Pereira, Joana & Nakatani, Jun & Kurisu, Kiyo H. & Hanaki, Keisuke, 2015. "Comparative energy and environmental analysis of Jatropha bioelectricity versus biodiesel production in remote areas," Energy, Elsevier, vol. 83(C), pages 284-293.
    2. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    3. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    4. Iyabo Adeola Olanrele & Adedoyin I. Lawal & Ezekiel Oseni & Ahmed Oluwatobi Adekunle & Bukola, B. Lawal-Adedoyin & Crystal O. Elleke & Racheal Ojeka-John & Henry Nweke-Love, 2020. "Accessing the Impacts of Contemporary Development in Biofuel on Agriculture, Energy and Domestic Economy: Evidence from Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 469-478.
    5. Gasparatos, A. & von Maltitz, G.P. & Johnson, F.X. & Lee, L. & Mathai, M. & Puppim de Oliveira, J.A. & Willis, K.J., 2015. "Biofuels in sub-Sahara Africa: Drivers, impacts and priority policy areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 879-901.
    6. Somorin, Tosin Onabanjo & Di Lorenzo, Giuseppina & Kolios, Athanasios J., 2017. "Life-cycle assessment of self-generated electricity in Nigeria and Jatropha biodiesel as an alternative power fuel," Renewable Energy, Elsevier, vol. 113(C), pages 966-979.
    7. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
    8. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    9. Melvin Jose, D.F. & Edwin Raj, R. & Durga Prasad, B. & Robert Kennedy, Z. & Mohammed Ibrahim, A., 2011. "A multi-variant approach to optimize process parameters for biodiesel extraction from rubber seed oil," Applied Energy, Elsevier, vol. 88(6), pages 2056-2063, June.
    10. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    11. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    12. Kalam, M.A. & Ahamed, J.U. & Masjuki, H.H., 2012. "Land availability of Jatropha production in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3999-4007.
    13. Wang, Rui & Song, Baoan & Zhou, Wanwei & Zhang, Yuping & Hu, Deyu & Bhadury, Pinaki S. & Yang, Song, 2011. "A facile and feasible method to evaluate and control the quality of Jatropha curcus L. seed oil for biodiesel feedstock: Gas chromatographic fingerprint," Applied Energy, Elsevier, vol. 88(6), pages 2064-2070, June.
    14. Hashemi, Seyed Sajad & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora, 2019. "Hydrothermal pretreatment of safflower straw to enhance biogas production," Energy, Elsevier, vol. 172(C), pages 545-554.
    15. García, Carlos A. & Fuentes, Alfredo & Hennecke, Anna & Riegelhaupt, Enrique & Manzini, Fabio & Masera, Omar, 2011. "Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico," Applied Energy, Elsevier, vol. 88(6), pages 2088-2097, June.
    16. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    17. Tasnia Hassan Nazifa & Noori M. Cata Saady & Carlos Bazan & Sohrab Zendehboudi & Adnan Aftab & Talib M. Albayati, 2021. "Anaerobic Digestion of Blood from Slaughtered Livestock: A Review," Energies, MDPI, vol. 14(18), pages 1-26, September.
    18. Zhang, Long & Bai, Wuliyasu, 2021. "Sustainability of crop–based biodiesel for transportation in China: Barrier analysis and life cycle ecological footprint calculations," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    19. Loes Willemijn Van Rooijen, 2014. "Pioneering in Marginal Fields: Jatropha for Carbon Credits and Restoring Degraded Land in Eastern Indonesia," Sustainability, MDPI, vol. 6(4), pages 1-25, April.
    20. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1105-1113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.