IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v54y2016icp1148-1171.html
   My bibliography  Save this article

A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment

Author

Listed:
  • Budzianowski, Wojciech M.

Abstract

Biogas is a relatively mature renewable energy technology but still most commercial biogas power plants require significant financial incentives. Additionally, local shortages of very cheap digestible feedstocks limit biogas productivity, especially for larger biogas power plants (>1MWe). Innovations that could improve cost-effectiveness and resource efficiency of biogas energy technology are therefore required.

Suggested Citation

  • Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
  • Handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:1148-1171
    DOI: 10.1016/j.rser.2015.10.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115011338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    2. Di Maria, Francesco & Micale, Caterina & Sordi, Alessio, 2014. "Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC," Renewable Energy, Elsevier, vol. 66(C), pages 461-467.
    3. Piekarczyk, Wodzisław & Czarnowska, Lucyna & Ptasiński, Krzysztof & Stanek, Wojciech, 2013. "Thermodynamic evaluation of biomass-to-biofuels production systems," Energy, Elsevier, vol. 62(C), pages 95-104.
    4. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    5. Abubaker, J. & Risberg, K. & Pell, M., 2012. "Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities," Applied Energy, Elsevier, vol. 99(C), pages 126-134.
    6. Athanasoulia, E. & Melidis, P. & Aivasidis, A., 2014. "Co-digestion of sewage sludge and crude glycerol from biodiesel production," Renewable Energy, Elsevier, vol. 62(C), pages 73-78.
    7. Nzila, Charles & Dewulf, Jo & Spanjers, Henri & Tuigong, David & Kiriamiti, Henry & van Langenhove, Herman, 2012. "Multi criteria sustainability assessment of biogas production in Kenya," Applied Energy, Elsevier, vol. 93(C), pages 496-506.
    8. Xia, Ao & Cheng, Jun & Lin, Richen & Ding, Lingkan & Zhou, Junhu & Cen, Kefa, 2013. "Combination of hydrogen fermentation and methanogenesis to enhance energy conversion efficiency from trehalose," Energy, Elsevier, vol. 55(C), pages 631-637.
    9. Hamad, Tarek A. & Agll, Abdulhakim A. & Hamad, Yousif M. & Bapat, Sushrut & Thomas, Mathew & Martin, Kevin B. & Sheffield, John W., 2014. "Study of a molten carbonate fuel cell combined heat, hydrogen and power system," Energy, Elsevier, vol. 75(C), pages 579-588.
    10. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    11. Wang, Xiaoqiang & Nordlander, Eva & Thorin, Eva & Yan, Jinyue, 2013. "Microalgal biomethane production integrated with an existing biogas plant: A case study in Sweden," Applied Energy, Elsevier, vol. 112(C), pages 478-484.
    12. Singh, S.P. & Prerna, Pandey, 2009. "Review of recent advances in anaerobic packed-bed biogas reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1569-1575, August.
    13. Guan, Tingting & Alvfors, Per & Lindbergh, Göran, 2014. "Investigation of the prospect of energy self-sufficiency and technical performance of an integrated PEMFC (proton exchange membrane fuel cell), dairy farm and biogas plant system," Applied Energy, Elsevier, vol. 130(C), pages 685-691.
    14. E. Perry Murray & T. Tsai & S. A. Barnett, 1999. "A direct-methane fuel cell with a ceria-based anode," Nature, Nature, vol. 400(6745), pages 649-651, August.
    15. Tedesco, S. & Marrero Barroso, T. & Olabi, A.G., 2014. "Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas," Renewable Energy, Elsevier, vol. 62(C), pages 527-534.
    16. Krishania, M. & Vijay, V.K. & Chandra, R., 2013. "Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay," Energy, Elsevier, vol. 57(C), pages 359-367.
    17. Havukainen, J. & Uusitalo, V. & Niskanen, A. & Kapustina, V. & Horttanainen, M., 2014. "Evaluation of methods for estimating energy performance of biogas production," Renewable Energy, Elsevier, vol. 66(C), pages 232-240.
    18. Zhu, L.D. & Hiltunen, E. & Antila, E. & Zhong, J.J. & Yuan, Z.H. & Wang, Z.M., 2014. "Microalgal biofuels: Flexible bioenergies for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1035-1046.
    19. Budzianowski, Wojciech M., 2012. "Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors," Energy, Elsevier, vol. 41(1), pages 280-297.
    20. Budzianowski, Wojciech M. & Budzianowska, Dominika A., 2015. "Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations," Energy, Elsevier, vol. 88(C), pages 658-666.
    21. Lee, Sunyoup & Park, Seunghyun & Kim, Changgi & Kim, Young-Min & Kim, Yongrae & Park, Cheolwoong, 2014. "Comparative study on EGR and lean burn strategies employed in an SI engine fueled by low calorific gas," Applied Energy, Elsevier, vol. 129(C), pages 10-16.
    22. Monlau, Florian & Latrille, Eric & Da Costa, Aline Carvalho & Steyer, Jean-Philippe & Carrère, Hélène, 2013. "Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment," Applied Energy, Elsevier, vol. 102(C), pages 1105-1113.
    23. Chandra, R. & Takeuchi, H. & Hasegawa, T. & Kumar, R., 2012. "Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments," Energy, Elsevier, vol. 43(1), pages 273-282.
    24. Rafique, Rashad & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Asam, Zaki-ul-Zaman & Murphy, Jerry D. & Kiely, Gerard, 2010. "Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production," Energy, Elsevier, vol. 35(12), pages 4556-4561.
    25. Dach, Jacek & Boniecki, Piotr & Przybył, Jacek & Janczak, Damian & Lewicki, Andrzej & Czekała, Wojciech & Witaszek, Kamil & Rodríguez Carmona, Pablo César & Cieślik, Marta, 2014. "Energetic efficiency analysis of the agricultural biogas plant in 250kWe experimental installation," Energy, Elsevier, vol. 69(C), pages 34-38.
    26. Turkin, A.A. & Dutka, M. & Vainchtein, D. & Gersen, S. & van Essen, V.M. & Visser, P. & Mokhov, A.V. & Levinsky, H.B. & De Hosson, J.Th.M., 2014. "Deposition of SiO2 nanoparticles in heat exchanger during combustion of biogas," Applied Energy, Elsevier, vol. 113(C), pages 1141-1148.
    27. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    28. Dong, Feiqing & Lu, Jianbo, 2013. "Using solar energy to enhance biogas production from livestock residue – A case study of the Tongren biogas engineering pig farm in South China," Energy, Elsevier, vol. 57(C), pages 759-765.
    29. Madsen, Michael & Holm-Nielsen, Jens Bo & Esbensen, Kim H., 2011. "Monitoring of anaerobic digestion processes: A review perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3141-3155, August.
    30. Singh, S.P. & Singh, Priyanka, 2014. "Effect of CO2 concentration on algal growth: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 172-179.
    31. Solmaz Aslanzadeh & Karthik Rajendran & Azam Jeihanipour & Mohammad J. Taherzadeh, 2013. "The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System," Energies, MDPI, vol. 6(6), pages 1-16, June.
    32. Papurello, D. & Borchiellini, R. & Bareschino, P. & Chiodo, V. & Freni, S. & Lanzini, A. & Pepe, F. & Ortigoza, G.A. & Santarelli, M, 2014. "Performance of a Solid Oxide Fuel Cell short-stack with biogas feeding," Applied Energy, Elsevier, vol. 125(C), pages 254-263.
    33. Andreas Lemmer & Yuling Chen & Anna-Maria Wonneberger & Frank Graf & Rainer Reimert, 2015. "Integration of a Water Scrubbing Technique and Two-Stage Pressurized Anaerobic Digestion in One Process," Energies, MDPI, vol. 8(3), pages 1-18, March.
    34. Patrick Nugent & Youssef Belmabkhout & Stephen D. Burd & Amy J. Cairns & Ryan Luebke & Katherine Forrest & Tony Pham & Shengqian Ma & Brian Space & Lukasz Wojtas & Mohamed Eddaoudi & Michael J. Zaworo, 2013. "Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation," Nature, Nature, vol. 495(7439), pages 80-84, March.
    35. Hahn, Henning & Krautkremer, Bernd & Hartmann, Kilian & Wachendorf, Michael, 2014. "Review of concepts for a demand-driven biogas supply for flexible power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 383-393.
    36. Gandiglio, M. & Lanzini, A. & Leone, P. & Santarelli, M. & Borchiellini, R., 2013. "Thermoeconomic analysis of large solid oxide fuel cell plants: Atmospheric vs. pressurized performance," Energy, Elsevier, vol. 55(C), pages 142-155.
    37. Merlin Christy, P. & Gopinath, L.R. & Divya, D., 2014. "A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 167-173.
    38. Supansa Youngsukkasem & Hamidreza Barghi & Sudip K. Rakshit & Mohammad J. Taherzadeh, 2013. "Rapid Biogas Production by Compact Multi-Layer Membrane Bioreactor: Efficiency of Synthetic Polymeric Membranes," Energies, MDPI, vol. 6(12), pages 1-14, November.
    39. Abbasi, Tasneem & Abbasi, S.A., 2010. "Production of clean energy by anaerobic digestion of phytomass--New prospects for a global warming amelioration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1653-1659, August.
    40. Li, Bingyun & Duan, Yuhua & Luebke, David & Morreale, Bryan, 2013. "Advances in CO2 capture technology: A patent review," Applied Energy, Elsevier, vol. 102(C), pages 1439-1447.
    41. Yang, Yoon-Cheol & Lee, Bong-Ju & Chun, Young-Nam, 2009. "Characteristics of methane reforming using gliding arc reactor," Energy, Elsevier, vol. 34(2), pages 172-177.
    42. Yuling Chen & Benjamin Rößler & Simon Zielonka & Anna-Maria Wonneberger & Andreas Lemmer, 2014. "Effects of Organic Loading Rate on the Performance of a Pressurized Anaerobic Filter in Two-Phase Anaerobic Digestion," Energies, MDPI, vol. 7(2), pages 1-15, February.
    43. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David, 2014. "Synthetic fuel production costs by means of solid oxide electrolysis cells," Energy, Elsevier, vol. 76(C), pages 104-113.
    44. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    45. Li, Yebo & Park, Stephen Y. & Zhu, Jiying, 2011. "Solid-state anaerobic digestion for methane production from organic waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 821-826, January.
    46. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    47. Seifert, A.H. & Rittmann, S. & Herwig, C., 2014. "Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis," Applied Energy, Elsevier, vol. 132(C), pages 155-162.
    48. Park, Su Han & Yoon, Seung Hyun & Cha, Junepyo & Lee, Chang Sik, 2014. "Mixing effects of biogas and dimethyl ether (DME) on combustion and emission characteristics of DME fueled high-speed diesel engine," Energy, Elsevier, vol. 66(C), pages 413-422.
    49. Tedesco, S. & Benyounis, K.Y. & Olabi, A.G., 2013. "Mechanical pretreatment effects on macroalgae-derived biogas production in co-digestion with sludge in Ireland," Energy, Elsevier, vol. 61(C), pages 27-33.
    50. Ellersdorfer, Markus & Weiβ, Christian, 2014. "Integration of biogas plants in the building materials industry," Renewable Energy, Elsevier, vol. 61(C), pages 125-131.
    51. Chen, Yuling & Rößler, Benjamin & Zielonka, Simon & Lemmer, Andreas & Wonneberger, Anna-Maria & Jungbluth, Thomas, 2014. "The pressure effects on two-phase anaerobic digestion," Applied Energy, Elsevier, vol. 116(C), pages 409-415.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhamed Rasit Atelge & Halil Senol & Mohammed Djaafri & Tulin Avci Hansu & David Krisa & Abdulaziz Atabani & Cigdem Eskicioglu & Hamdi Muratçobanoğlu & Sebahattin Unalan & Slimane Kalloum & Nuri Azbar, 2021. "A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes," Sustainability, MDPI, vol. 13(20), pages 1-39, October.
    2. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    3. Hahn, Henning & Krautkremer, Bernd & Hartmann, Kilian & Wachendorf, Michael, 2014. "Review of concepts for a demand-driven biogas supply for flexible power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 383-393.
    4. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    5. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    6. Ganzoury, Mohamed A. & Allam, Nageh K., 2015. "Impact of nanotechnology on biogas production: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1392-1404.
    7. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    8. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    9. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    10. Moioli, Emanuele & Schildhauer, Tilman, 2022. "Negative CO2 emissions from flexible biofuel synthesis: Concepts, potentials, technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
    12. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    13. Yao, Yiqing & Zhou, Jianye & An, Lizhe & Kafle, Gopi Krishna & Chen, Shulin & Qiu, Ling, 2018. "Role of soil in improving process performance and methane yield of anaerobic digestion with corn straw as substrate," Energy, Elsevier, vol. 151(C), pages 998-1006.
    14. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    15. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    16. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    17. Suberu, Mohammed Yekini & Bashir, Nouruddeen & Mustafa, Mohd. Wazir, 2013. "Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 643-654.
    18. Djatkov, Djordje & Effenberger, Mathias & Martinov, Milan, 2014. "Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems," Applied Energy, Elsevier, vol. 134(C), pages 163-175.
    19. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    20. Hassan, Muhammad & Ding, Weimin & Umar, Muhammad & Hei, Kunlun & Bi, Jinhua & Shi, Zhendan, 2017. "Methane enhancement and asynchronism minimization through co-digestion of goose manure and NaOH solubilized corn stover with waste activated sludge," Energy, Elsevier, vol. 118(C), pages 1256-1263.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:1148-1171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.