IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v44y2015icp824-834.html
   My bibliography  Save this article

Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass

Author

Listed:
  • Yang, Liangcheng
  • Xu, Fuqing
  • Ge, Xumeng
  • Li, Yebo

Abstract

Solid-state anaerobic digestion (SS-AD) has gained increasing attention in recent years, especially for digesting lignocellulosic biomass. Compared to liquid anaerobic digestion (L-AD), SS-AD handles feedstocks with higher total solids content, and therefore, performs more effectively at higher organic loading rates and has higher volumetric biogas productivity. Challenges facing SS-AD of lignocellulosic biomass are primarily related to its relatively low methane yield, potential instability, and low value end-products. These challenges are either due to the inherent limits of SS-AD (e.g. retarded mass transfer caused by high solid content) or can be attributed to the nature of lignocellulosic biomass (e.g. components recalcitrant to biodegradation). To address these challenges, a variety of methods, including pretreatment of feedstock, improvement of inoculation efficiency, co-digestion of multiple feedstocks, and upgrading biogas to higher-value transportation fuels, have been examined to enhance the performance of SS-AD and increase the value of the end products. This review summarizes these challenges in SS-AD of lignocellulosic biomass and discusses the mechanisms and feasibility of potential strategies for resolving them.

Suggested Citation

  • Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
  • Handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:824-834
    DOI: 10.1016/j.rser.2015.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211500012X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    2. Mshandete, Anthony & Björnsson, Lovisa & Kivaisi, Amelia K. & Rubindamayugi, M.S.T. & Mattiasson, Bo, 2006. "Effect of particle size on biogas yield from sisal fibre waste," Renewable Energy, Elsevier, vol. 31(14), pages 2385-2392.
    3. Monlau, Florian & Latrille, Eric & Da Costa, Aline Carvalho & Steyer, Jean-Philippe & Carrère, Hélène, 2013. "Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment," Applied Energy, Elsevier, vol. 102(C), pages 1105-1113.
    4. Chandra, R. & Takeuchi, H. & Hasegawa, T. & Kumar, R., 2012. "Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments," Energy, Elsevier, vol. 43(1), pages 273-282.
    5. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    6. O-Thong, Sompong & Boe, Kanokwan & Angelidaki, Irini, 2012. "Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production," Applied Energy, Elsevier, vol. 93(C), pages 648-654.
    7. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production," Applied Energy, Elsevier, vol. 94(C), pages 129-140.
    8. Yang, Liangcheng & Ge, Xumeng & Wan, Caixia & Yu, Fei & Li, Yebo, 2014. "Progress and perspectives in converting biogas to transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1133-1152.
    9. Li, Yebo & Park, Stephen Y. & Zhu, Jiying, 2011. "Solid-state anaerobic digestion for methane production from organic waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 821-826, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    3. Lin, Long & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2018. "Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 151-167.
    4. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    5. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    6. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    7. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    8. Di Maria, Francesco & Sisani, Federico & Norouzi, Omid & Mersky, Ronald L., 2019. "The effectiveness of anaerobic digestion of bio-waste in replacing primary energies: An EU28 case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 347-354.
    9. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    10. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    11. Sambusiti, C. & Monlau, F. & Ficara, E. & Carrère, H. & Malpei, F., 2013. "A comparison of different pre-treatments to increase methane production from two agricultural substrates," Applied Energy, Elsevier, vol. 104(C), pages 62-70.
    12. Alves, Ingrid R.F.S. & Mahler, Claudio F. & Oliveira, Luciano B. & Reis, Marcelo M. & Bassin, João P., 2022. "Investigating the effect of crude glycerol from biodiesel industry on the anaerobic co-digestion of sewage sludge and food waste in ternary mixtures," Energy, Elsevier, vol. 241(C).
    13. Hashemi, Seyed Sajad & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora, 2019. "Hydrothermal pretreatment of safflower straw to enhance biogas production," Energy, Elsevier, vol. 172(C), pages 545-554.
    14. Lamis Yousra Shahrazed Khelifa Zouaghi & Hayet Djelal & Zineb Salem, 2021. "Anaerobic co-digestion of three organic wastes under mesophilic conditions: lab-scale and pilot-scale studies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9014-9028, June.
    15. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    16. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Chen, Xiaohua & Zhang, YaLei & Gu, Yu & Liu, Zhanguang & Shen, Zheng & Chu, Huaqiang & Zhou, Xuefei, 2014. "Enhancing methane production from rice straw by extrusion pretreatment," Applied Energy, Elsevier, vol. 122(C), pages 34-41.
    18. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    19. Taghizadeh-Alisaraei, Ahmad & Hosseini, Seyyed Hasan & Ghobadian, Barat & Motevali, Ali, 2017. "Biofuel production from citrus wastes: A feasibility study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1100-1112.
    20. Yao, Yiqing & Zhou, Jianye & An, Lizhe & Kafle, Gopi Krishna & Chen, Shulin & Qiu, Ling, 2018. "Role of soil in improving process performance and methane yield of anaerobic digestion with corn straw as substrate," Energy, Elsevier, vol. 151(C), pages 998-1006.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:824-834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.