IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v90y2018icp877-891.html
   My bibliography  Save this article

Pretreatment of lignocellulosic wastes for biofuel production: A critical review

Author

Listed:
  • Kumari, Dolly
  • Singh, Radhika

Abstract

Protection of environment is of immediate concern and this can only be achieved by avoiding the use of chemicals for fuel production. Lignocellulosic waste is becoming popular as a feedstock for biofuel production. The can be converted into usable form for biofuel production by using a suitable pretreatment method. Different pretreatment methods have been used by researchers which are physical, chemical, physico-chemical, biological and combined pretreatments. Evidently chemical pretreatment is found to be more expensive as a large amount of chemicals are used for pretreating the lignocellulosic substrate. It has been shown that combined pretreatments are more effective as compared to single pretreatment and there is an extensive scope of combinations which can also be applied in future. Recent review critically discusses and compares different pretreatment methods, biomass resources, chemical composition of different agricultural biomass and the use of this biomass for bioenergy generation. Various pretreatment processes used for bio-hydrogen, bio-methane, bio-ethanol, bio-methanol bio-butanol and bio-diesel production are also discussed.

Suggested Citation

  • Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
  • Handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:877-891
    DOI: 10.1016/j.rser.2018.03.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118302041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.03.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
    2. Haghighi Mood, Sohrab & Hossein Golfeshan, Amir & Tabatabaei, Meisam & Salehi Jouzani, Gholamreza & Najafi, Gholam Hassan & Gholami, Mehdi & Ardjmand, Mehdi, 2013. "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 77-93.
    3. Kumar, Vinod & Nanda, Manisha & Joshi, H.C. & Singh, Ajay & Sharma, Sonal & Verma, Monu, 2018. "Production of biodiesel and bioethanol using algal biomass harvested from fresh water river," Renewable Energy, Elsevier, vol. 116(PA), pages 606-612.
    4. Han, S.-H. & Cho, D.H. & Kim, Y.H. & Shin, S.-J., 2013. "Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone–butanol–ethanol fermentation," Energy, Elsevier, vol. 61(C), pages 13-17.
    5. Raslavičius, Laurencas & Semenov, Vladimir G. & Chernova, Nadezhda I. & Keršys, Artūras & Kopeyka, Aleksandr K., 2014. "Producing transportation fuels from algae: In search of synergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 133-142.
    6. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production," Applied Energy, Elsevier, vol. 94(C), pages 129-140.
    7. Siciliano, A. & Stillitano, M.A. & De Rosa, S., 2016. "Biogas production from wet olive mill wastes pretreated with hydrogen peroxide in alkaline conditions," Renewable Energy, Elsevier, vol. 85(C), pages 903-916.
    8. Cheng, Chieh-Lun & Che, Pei-Yi & Chen, Bor-Yann & Lee, Wen-Jhy & Lin, Chiu-Yue & Chang, Jo-Shu, 2012. "Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora," Applied Energy, Elsevier, vol. 100(C), pages 3-9.
    9. Ranjan, Amrita & Khanna, Swati & Moholkar, V.S., 2013. "Feasibility of rice straw as alternate substrate for biobutanol production," Applied Energy, Elsevier, vol. 103(C), pages 32-38.
    10. Raslavičius, Laurencas & Striūgas, Nerijus & Felneris, Mantas, 2018. "New insights into algae factories of the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 643-654.
    11. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    12. Smichi, Neila & Messaoudi, Yosra & Moujahed, Nizar & Gargouri, Mohamed, 2016. "Ethanol production from halophyte Juncus maritimus using freezing and thawing biomass pretreatment," Renewable Energy, Elsevier, vol. 85(C), pages 1357-1361.
    13. Siddiquee, Muhammad N. & Rohani, Sohrab, 2011. "Lipid extraction and biodiesel production from municipal sewage sludges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1067-1072, February.
    14. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1462-1476.
    15. Kumar, Manish & Gayen, Kalyan, 2011. "Developments in biobutanol production: New insights," Applied Energy, Elsevier, vol. 88(6), pages 1999-2012, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Pixiang & Chen, Yong Mei & Wang, Yifen & Lee, Yoon Y. & Zong, Wenming & Taylor, Steven & McDonald, Timothy & Wang, Yi, 2019. "Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum ," Applied Energy, Elsevier, vol. 236(C), pages 551-559.
    2. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1462-1476.
    4. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    5. Harish, B.S & Janaki Ramaiah, M. & Babu Uppuluri, Kiran, 2015. "Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 533-547.
    6. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    7. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    8. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
    9. Tsai, Tsung-Yu & Lo, Yung-Chung & Dong, Cheng-Di & Nagarajan, Dillirani & Chang, Jo-Shu & Lee, Duu-Jong, 2020. "Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum," Applied Energy, Elsevier, vol. 277(C).
    10. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.
    11. Leong, Wai-Hong & Lim, Jun-Wei & Lam, Man-Kee & Uemura, Yoshimitsu & Ho, Yeek-Chia, 2018. "Third generation biofuels: A nutritional perspective in enhancing microbial lipid production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 950-961.
    12. Jomnonkhaow, Umarin & Sittijunda, Sureewan & Reungsang, Alissara, 2022. "Assessment of organosolv, hydrothermal, and combined organosolv and hydrothermal with enzymatic pretreatment to increase the production of biogas from Napier grass and Napier silage," Renewable Energy, Elsevier, vol. 181(C), pages 1237-1249.
    13. Chen, Xiaohua & Zhang, YaLei & Gu, Yu & Liu, Zhanguang & Shen, Zheng & Chu, Huaqiang & Zhou, Xuefei, 2014. "Enhancing methane production from rice straw by extrusion pretreatment," Applied Energy, Elsevier, vol. 122(C), pages 34-41.
    14. Yin, Zhihong & Chu, Ruoyu & Zhu, Liandong & Li, Shuangxi & Mo, Fan & Hu, Dan & Liu, Chenchen, 2021. "Application of chitosan-based flocculants to harvest microalgal biomass for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Barakat, Abdellatif & Monlau, Florian & Solhy, Abderrahim & Carrere, Hélène, 2015. "Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement," Applied Energy, Elsevier, vol. 142(C), pages 240-246.
    16. Ranjan, Amrita & Khanna, Swati & Moholkar, V.S., 2013. "Feasibility of rice straw as alternate substrate for biobutanol production," Applied Energy, Elsevier, vol. 103(C), pages 32-38.
    17. Barakat, Abdellatif & Chuetor, Santi & Monlau, Florian & Solhy, Abderrahim & Rouau, Xavier, 2014. "Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis," Applied Energy, Elsevier, vol. 113(C), pages 97-105.
    18. Zheng, Jin & Tashiro, Yukihiro & Wang, Qunhui & Sakai, Kenji & Sonomoto, Kenji, 2015. "Feasibility of acetone–butanol–ethanol fermentation from eucalyptus hydrolysate without nutrients supplementation," Applied Energy, Elsevier, vol. 140(C), pages 113-119.
    19. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    20. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:877-891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.