IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v370y2020ics0096300319309117.html
   My bibliography  Save this article

Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation

Author

Listed:
  • Hassan, Bryar A.
  • Rashid, Tarik A.

Abstract

Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA.

Suggested Citation

  • Hassan, Bryar A. & Rashid, Tarik A., 2020. "Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation," Applied Mathematics and Computation, Elsevier, vol. 370(C).
  • Handle: RePEc:eee:apmaco:v:370:y:2020:i:c:s0096300319309117
    DOI: 10.1016/j.amc.2019.124919
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319309117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naz Niamul Islam & M A Hannan & Azah Mohamed & Hussain Shareef, 2016. "Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-17, January.
    2. Md Shafiullah & M. A. Abido & Md Ismail Hossain & A. H. Mantawy, 2018. "An Improved OPP Problem Formulation for Distribution Grid Observability," Energies, MDPI, vol. 11(11), pages 1-16, November.
    3. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    4. Kuntal Bhattacharjee, 2018. "Economic Dispatch Problems Using Backtracking Search Optimization," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 7(2), pages 39-60, April.
    5. Hong Zhao & Fan Min & William Zhu, 2013. "Cost-Sensitive Feature Selection of Numeric Data with Measurement Errors," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-13, April.
    6. Jianzhong Zhou & Na Sun & Benjun Jia & Tian Peng, 2018. "A Novel Decomposition-Optimization Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 11(7), pages 1-27, July.
    7. Jianzhong Zhou & Chu Zhang & Tian Peng & Yanhe Xu, 2018. "Parameter Identification of Pump Turbine Governing System Using an Improved Backtracking Search Algorithm," Energies, MDPI, vol. 11(7), pages 1-18, June.
    8. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    9. Chu Zhang & Chaoshun Li & Tian Peng & Xin Xia & Xiaoming Xue & Wenlong Fu & Jianzhong Zhou, 2018. "Modeling and Synchronous Optimization of Pump Turbine Governing System Using Sparse Robust Least Squares Support Vector Machine and Hybrid Backtracking Search Algorithm," Energies, MDPI, vol. 11(11), pages 1-21, November.
    10. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    11. Xiaohui Yuan & Xiaotao Wu & Hao Tian & Yanbin Yuan & Rana Muhammad Adnan, 2016. "Parameter Identification of Nonlinear Muskingum Model with Backtracking Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2767-2783, June.
    12. Sizhou Sun & Lisheng Wei & Jie Xu & Zhenni Jin, 2019. "A New Wind Speed Forecasting Modeling Strategy Using Two-Stage Decomposition, Feature Selection and DAWNN," Energies, MDPI, vol. 12(3), pages 1-24, January.
    13. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    14. Tarik A Rashid & Dosti K Abbas & Yalin K Turel, 2019. "A multi hidden recurrent neural network with a modified grey wolf optimizer," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chou, Jui-Sheng & Truong, Dinh-Nhat, 2021. "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    2. Hu, Gang & Du, Bo & Li, Huinan & Wang, Xupeng, 2022. "Quadratic interpolation boosted black widow spider-inspired optimization algorithm with wavelet mutation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 428-467.
    3. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu Zhang & Tian Peng & Chaoshun Li & Wenlong Fu & Xin Xia & Xiaoming Xue, 2019. "Multiobjective Optimization of a Fractional-Order PID Controller for Pumped Turbine Governing System Using an Improved NSGA-III Algorithm under Multiworking Conditions," Complexity, Hindawi, vol. 2019, pages 1-18, February.
    2. Dariusz Gąsiorowski & Romuald Szymkiewicz, 2020. "Identification of Parameters Influencing the Accuracy of the Solution of the Nonlinear Muskingum Equation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3147-3164, August.
    3. Dong-Hui Li & Liqun Qi & Judy Tam & Soon-Yi Wu, 2004. "A Smoothing Newton Method for Semi-Infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 169-194, November.
    4. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    5. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    6. Pablo Pérez-Gosende & Josefa Mula & Manuel Díaz-Madroñero, 2020. "Overview of Dynamic Facility Layout Planning as a Sustainability Strategy," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    7. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    8. Jianing Li & Cheng Qin & Chen Yang & Bin Ai & Yecheng Zhou, 2023. "Extraction of Single Diode Model Parameters of Solar Cells and PV Modules by Combining an Intelligent Optimization Algorithm with Simplified Explicit Equation Based on Lambert W Function," Energies, MDPI, vol. 16(14), pages 1-23, July.
    9. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    10. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    11. Ralf Münnich & Ekkehard Sachs & Matthias Wagner, 2012. "Calibration of estimator-weights via semismooth Newton method," Journal of Global Optimization, Springer, vol. 52(3), pages 471-485, March.
    12. Naila & Shaikh Saaqib Haroon & Shahzad Hassan & Salman Amin & Intisar Ali Sajjad & Asad Waqar & Muhammad Aamir & Muneeb Yaqoob & Imtiaz Alam, 2018. "Multiple Fuel Machines Power Economic Dispatch Using Stud Differential Evolution," Energies, MDPI, vol. 11(6), pages 1-20, May.
    13. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    14. Can Ding & Yiyuan Zhou & Qingchang Ding & Kaiming Li, 2022. "Integrated Carbon-Capture-Based Low-Carbon Economic Dispatch of Power Systems Based on EEMD-LSTM-SVR Wind Power Forecasting," Energies, MDPI, vol. 15(5), pages 1-27, February.
    15. Y. Gao, 2006. "Newton Methods for Quasidifferentiable Equations and Their Convergence," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 417-428, December.
    16. Mohamed Abdel-Basset & Reda Mohamed & Ripon K. Chakrabortty & Michael J. Ryan & Attia El-Fergany, 2021. "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models," Energies, MDPI, vol. 14(7), pages 1-33, March.
    17. Wen-chuan Wang & Wei-can Tian & Dong-mei Xu & Kwok-wing Chau & Qiang Ma & Chang-jun Liu, 2023. "Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3129-3150, June.
    18. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    19. Ghiasi, Mohammad, 2019. "Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources," Energy, Elsevier, vol. 169(C), pages 496-507.
    20. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:370:y:2020:i:c:s0096300319309117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.