IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v389y2021ics0096300320304914.html
   My bibliography  Save this article

A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean

Author

Listed:
  • Chou, Jui-Sheng
  • Truong, Dinh-Nhat

Abstract

This study develops a novel metaheuristic algorithm that is motivated by the behavior of jellyfish in the ocean and is called artificial Jellyfish Search (JS) optimizer. The simulation of the search behavior of jellyfish involves their following the ocean current, their motions inside a jellyfish swarm (active motions and passive motions), a time control mechanism for switching among these movements, and their convergences into jellyfish bloom. JS optimizer is tested using a comprehensive set of mathematical benchmark functions and applied to a series of structural engineering problems. Fifty small/average-scale and twenty-five large-scale functions involving various dimensions were used to validate JS optimizer, which was compared with ten well-known metaheuristic algorithms. JS optimizer was found to outperform those algorithms in solving mathematical benchmark functions. The JS algorithm was then used to solve structural optimization problems, including 25-bar tower design, 52-bar tower design and 582-bar tower design problems. In those cases, JS not only performed best but also required the fewest evaluations of objective functions. Therefore, JS is potentially an excellent metaheuristic algorithm for solving optimization problems.

Suggested Citation

  • Chou, Jui-Sheng & Truong, Dinh-Nhat, 2021. "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:apmaco:v:389:y:2021:i:c:s0096300320304914
    DOI: 10.1016/j.amc.2020.125535
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320304914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    2. Gao, Shujun & de Silva, Clarence W., 2018. "Estimation distribution algorithms on constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 323-345.
    3. Liu, Jianjun & Wu, Changzhi & Wu, Guoning & Wang, Xiangyu, 2015. "A novel differential search algorithm and applications for structure design," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 246-269.
    4. Hassan, Bryar A. & Rashid, Tarik A., 2020. "Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Gruden & Irena Ištoka Otković & Matjaž Šraml, 2020. "Neural Networks Applied to Microsimulation: A Prediction Model for Pedestrian Crossing Time," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    2. Thibaud Deguilhem & Juliette Schlegel & Jean-Philippe Berrou & Ousmane Djibo & Alain Piveteau, 2024. "Too many options: How to identify coalitions in a policy network?," Post-Print hal-04689665, HAL.
    3. Сластников С.А., 2014. "Применение Метаэвристических Алгоритмов Для Задачи Маршрутизации Транспорта," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 50(1), pages 117-126, январь.
    4. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    5. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    6. Kadri Sylejmani & Jürgen Dorn & Nysret Musliu, 2017. "Planning the trip itinerary for tourist groups," Information Technology & Tourism, Springer, vol. 17(3), pages 275-314, September.
    7. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    8. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "Optimization of manufacturing systems using a neural network metamodel with a new training approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1191-1197, September.
    9. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    10. Joseph B. Mazzola & Robert H. Schantz, 1997. "Multiple‐facility loading under capacity‐based economies of scope," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 229-256, April.
    11. Kadri Sylejmani & Jürgen Dorn & Nysret Musliu, 0. "Planning the trip itinerary for tourist groups," Information Technology & Tourism, Springer, vol. 0, pages 1-40.
    12. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    13. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    14. Chris S. K. Leung & Henry Y. K. Lau, 2018. "Multiobjective Simulation-Based Optimization Based on Artificial Immune Systems for a Distribution Center," Journal of Optimization, Hindawi, vol. 2018, pages 1-15, May.
    15. Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
    16. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    17. Andaryan, Abdullah Zareh & Mousighichi, Kasra & Ghaffarinasab, Nader, 2024. "A heuristic approach to the stochastic capacitated single allocation hub location problem with Bernoulli demands," European Journal of Operational Research, Elsevier, vol. 312(3), pages 954-968.
    18. L Tang & X Wang, 2008. "An iterated local search heuristic for the capacitated prize-collecting travelling salesman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 590-599, May.
    19. Gintaras Palubeckis & Dalius Rubliauskas, 2012. "A branch-and-bound algorithm for the minimum cut linear arrangement problem," Journal of Combinatorial Optimization, Springer, vol. 24(4), pages 540-563, November.
    20. Panta Lučić & Dušan Teodorović, 2007. "Metaheuristics approach to the aircrew rostering problem," Annals of Operations Research, Springer, vol. 155(1), pages 311-338, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:389:y:2021:i:c:s0096300320304914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.