IDEAS home Printed from https://ideas.repec.org/a/igg/jeoe00/v7y2018i2p39-60.html
   My bibliography  Save this article

Economic Dispatch Problems Using Backtracking Search Optimization

Author

Listed:
  • Kuntal Bhattacharjee

    (Institute of Technology, Nirma University, Ahmedabad, Gujarat, India)

Abstract

The purpose of this article is to present a backtracking search optimization technique (BSA) to determine the feasible optimum solution of the economic load dispatch (ELD) problems involving different realistic equality and inequality constraints, such as power balance, ramp rate limits, and prohibited operating zone constraints. Effects of valve-point loading, multi-fuel option of large-scale thermal plants, system transmission loss are also taken into consideration for more realistic application. Two effective operations, mutation and crossover, help BSA algorithms to find the global solution for different optimization problems. BSA has the capability to deal with multimodal problems due to its powerful exploration and exploitation capability. BSA is free from sensitive parameter control operations. Simulation results set up the proposed approach in a better stage compared to several other existing optimization techniques in terms quality of solution and computational efficiency. Results also reveal the robustness of the proposed methodology.

Suggested Citation

  • Kuntal Bhattacharjee, 2018. "Economic Dispatch Problems Using Backtracking Search Optimization," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 7(2), pages 39-60, April.
  • Handle: RePEc:igg:jeoe00:v:7:y:2018:i:2:p:39-60
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJEOE.2018040102
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan, Bryar A. & Rashid, Tarik A., 2020. "Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation," Applied Mathematics and Computation, Elsevier, vol. 370(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jeoe00:v:7:y:2018:i:2:p:39-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.