IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v139y2008i2d10.1007_s10957-008-9406-2.html
   My bibliography  Save this article

Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems

Author

Listed:
  • G. L. Zhou

    (Curtin University of Technology)

  • L. Caccetta

    (Curtin University of Technology)

Abstract

We consider a class of stochastic linear complementarity problems (SLCPs) with finitely many realizations. In this paper we reformulate this class of SLCPs as a constrained minimization (CM) problem. Then, we present a feasible semismooth Newton method to solve this CM problem. Preliminary numerical results show that this CM reformulation may yield a solution with high safety for SLCPs.

Suggested Citation

  • G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
  • Handle: RePEc:spr:joptap:v:139:y:2008:i:2:d:10.1007_s10957-008-9406-2
    DOI: 10.1007/s10957-008-9406-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9406-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9406-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    2. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    3. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liyan Xu & Bo Yu, 2014. "CVaR-constrained stochastic programming reformulation for stochastic nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 58(2), pages 483-501, June.
    2. Wang, Guoxin & Zhang, Jin & Zeng, Bo & Lin, Gui-Hua, 2018. "Expected residual minimization formulation for a class of stochastic linear second-order cone complementarity problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 437-447.
    3. Yakui Huang & Hongwei Liu, 2016. "Smoothing projected Barzilai–Borwein method for constrained non-Lipschitz optimization," Computational Optimization and Applications, Springer, vol. 65(3), pages 671-698, December.
    4. Jingyong Tang & Jinchuan Zhou, 2024. "Expected Residual Minimization Formulation for Stochastic Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 651-675, October.
    5. Shouqiang Du & Liyuan Cui & Yuanyuan Chen & Yimin Wei, 2022. "Stochastic Tensor Complementarity Problem with Discrete Distribution," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 912-929, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shouqiang Du & Liyuan Cui & Yuanyuan Chen & Yimin Wei, 2022. "Stochastic Tensor Complementarity Problem with Discrete Distribution," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 912-929, March.
    2. Yuan Li & Hai-Shan Han & Dan-Dan Yang, 2014. "A Penalized-Equation-Based Generalized Newton Method for Solving Absolute-Value Linear Complementarity Problems," Journal of Mathematics, Hindawi, vol. 2014, pages 1-10, September.
    3. Jingyong Tang & Jinchuan Zhou, 2024. "Expected Residual Minimization Formulation for Stochastic Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 651-675, October.
    4. C. Zhang & X. Chen, 2008. "Stochastic Nonlinear Complementarity Problem and Applications to Traffic Equilibrium under Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 277-295, May.
    5. M. Wang & M. M. Ali, 2010. "Stochastic Nonlinear Complementarity Problems: Stochastic Programming Reformulation and Penalty-Based Approximation Method," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 597-614, March.
    6. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    7. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Other publications TiSEM b8e0c74e-2219-4ab0-99a2-0, Tilburg University, School of Economics and Management.
    8. Dong-Hui Li & Liqun Qi & Judy Tam & Soon-Yi Wu, 2004. "A Smoothing Newton Method for Semi-Infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 169-194, November.
    9. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    10. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    11. M. J. Luo & G. H. Lin, 2009. "Expected Residual Minimization Method for Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 103-116, January.
    12. Zhang, Yongxiong & Zheng, Hua & Lu, Xiaoping & Vong, Seakweng, 2023. "Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    13. Guo-qiang Wang & Yu-jing Yue & Xin-zhong Cai, 2009. "Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem," Fuzzy Information and Engineering, Springer, vol. 1(4), pages 435-445, December.
    14. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.
    15. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    16. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    17. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    18. E. Demidenko, 2008. "Criteria for Unconstrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 375-395, March.
    19. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    20. Fang Lu & Shengjie Li & Jing Yang, 2015. "Convergence analysis of weighted expected residual method for nonlinear stochastic variational inequality problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 229-242, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:139:y:2008:i:2:d:10.1007_s10957-008-9406-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.