IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1752-d156128.html
   My bibliography  Save this article

A Novel Decomposition-Optimization Model for Short-Term Wind Speed Forecasting

Author

Listed:
  • Jianzhong Zhou

    (School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China)

  • Na Sun

    (School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China)

  • Benjun Jia

    (School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China)

  • Tian Peng

    (School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China)

Abstract

Due to inherent randomness and fluctuation of wind speeds, it is very challenging to develop an effective and practical model to achieve accurate wind speed forecasting, especially over large forecasting horizons. This paper presents a new decomposition-optimization model created by integrating Variational Mode Decomposition (VMD), Backtracking Search Algorithm (BSA), and Regularized Extreme Learning Machine (RELM) to enhance forecasting accuracy. The observed wind speed time series is firstly decomposed by VMD into several relative stable subsequences. Then, an emerging optimization algorithm, BSA, is utilized to search the optimal parameters of the RELM. Subsequently, the well-trained RELM is constructed to do multi-step (1-, 2-, 4-, and 6-step) wind speed forecasting. Experiments have been executed with the proposed method as well as several benchmark models using several datasets from a widely-studied wind farm, Sotavento Galicia in Spain. Additionally, the effects of decomposition and optimization methods on the final forecasting results are analyzed quantitatively, whereby the importance of decomposition technique is emphasized. Results reveal that the proposed VMD-BSA-RELM model achieves significantly better performance than its rivals both on single- and multi-step forecasting with at least 50% average improvement, which indicates it is a powerful tool for short-term wind speed forecasting.

Suggested Citation

  • Jianzhong Zhou & Na Sun & Benjun Jia & Tian Peng, 2018. "A Novel Decomposition-Optimization Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 11(7), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1752-:d:156128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
    2. Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
    3. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    4. Wang, Jianzhou & Heng, Jiani & Xiao, Liye & Wang, Chen, 2017. "Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting," Energy, Elsevier, vol. 125(C), pages 591-613.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Wang, Yamin & Wu, Lei, 2016. "On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation," Energy, Elsevier, vol. 112(C), pages 208-220.
    7. Xiao, Liye & Shao, Wei & Yu, Mengxia & Ma, Jing & Jin, Congjun, 2017. "Research and application of a combined model based on multi-objective optimization for electrical load forecasting," Energy, Elsevier, vol. 119(C), pages 1057-1074.
    8. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    9. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    10. Yuyang Gao & Chao Qu & Kequan Zhang, 2016. "A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(10), pages 1-28, September.
    11. Liu, Hui & Tian, Hongqi & Liang, Xifeng & Li, Yanfei, 2015. "New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 83(C), pages 1066-1075.
    12. Nantian Huang & Chong Yuan & Guowei Cai & Enkai Xing, 2016. "Hybrid Short Term Wind Speed Forecasting Using Variational Mode Decomposition and a Weighted Regularized Extreme Learning Machine," Energies, MDPI, vol. 9(12), pages 1-19, November.
    13. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    14. Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
    15. Wang, Jianzhou & Hu, Jianming, 2015. "A robust combination approach for short-term wind speed forecasting and analysis – Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vec," Energy, Elsevier, vol. 93(P1), pages 41-56.
    16. Wang, Shouxiang & Zhang, Na & Wu, Lei & Wang, Yamin, 2016. "Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method," Renewable Energy, Elsevier, vol. 94(C), pages 629-636.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yonggang Li & Yue Wang & Binyuan Wu, 2020. "Short-Term Direct Probability Prediction Model of Wind Power Based on Improved Natural Gradient Boosting," Energies, MDPI, vol. 13(18), pages 1-15, September.
    2. Wei Sun & Qi Gao, 2019. "Short-Term Wind Speed Prediction Based on Variational Mode Decomposition and Linear–Nonlinear Combination Optimization Model," Energies, MDPI, vol. 12(12), pages 1-27, June.
    3. Yuxing Li & Xiao Chen & Jing Yu & Xiaohui Yang & Huijun Yang, 2019. "The Data-Driven Optimization Method and Its Application in Feature Extraction of Ship-Radiated Noise with Sample Entropy," Energies, MDPI, vol. 12(3), pages 1-18, January.
    4. David Schönheit & Dominik Möst, 2019. "The Effect of Offshore Wind Capacity Expansion on Uncertainties in Germany’s Day-Ahead Wind Energy Forecasts," Energies, MDPI, vol. 12(13), pages 1-23, July.
    5. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    6. Sun, Na & Zhou, Jianzhong & Chen, Lu & Jia, Benjun & Tayyab, Muhammad & Peng, Tian, 2018. "An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine," Energy, Elsevier, vol. 165(PB), pages 939-957.
    7. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    8. Jian Yang & Xin Zhao & Haikun Wei & Kanjian Zhang, 2019. "Sample Selection Based on Active Learning for Short-Term Wind Speed Prediction," Energies, MDPI, vol. 12(3), pages 1-12, January.
    9. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    10. Qinkai Han & Hao Wu & Tao Hu & Fulei Chu, 2018. "Short-Term Wind Speed Forecasting Based on Signal Decomposing Algorithm and Hybrid Linear/Nonlinear Models," Energies, MDPI, vol. 11(11), pages 1-23, November.
    11. Hassan, Bryar A. & Rashid, Tarik A., 2020. "Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation," Applied Mathematics and Computation, Elsevier, vol. 370(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    2. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    3. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    4. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    5. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    6. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    7. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    8. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    9. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2018. "Multi-step ahead forecasting in electrical power system using a hybrid forecasting system," Renewable Energy, Elsevier, vol. 122(C), pages 533-550.
    10. Rui Wang & Jingrui Li & Jianzhou Wang & Chengze Gao, 2018. "Research and Application of a Hybrid Wind Energy Forecasting System Based on Data Processing and an Optimized Extreme Learning Machine," Energies, MDPI, vol. 11(7), pages 1-29, July.
    11. Sun, Na & Zhou, Jianzhong & Chen, Lu & Jia, Benjun & Tayyab, Muhammad & Peng, Tian, 2018. "An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine," Energy, Elsevier, vol. 165(PB), pages 939-957.
    12. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    13. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    14. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    15. Sizhou Sun & Jingqi Fu & Ang Li, 2019. "A Compound Wind Power Forecasting Strategy Based on Clustering, Two-Stage Decomposition, Parameter Optimization, and Optimal Combination of Multiple Machine Learning Approaches," Energies, MDPI, vol. 12(18), pages 1-22, September.
    16. Fu, Wenlong & Fang, Ping & Wang, Kai & Li, Zhenxing & Xiong, Dongzhen & Zhang, Kai, 2021. "Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and Volterra series model," Renewable Energy, Elsevier, vol. 179(C), pages 1122-1139.
    17. He, Qingqing & Wang, Jianzhou & Lu, Haiyan, 2018. "A hybrid system for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 226(C), pages 756-771.
    18. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    19. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2019. "A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction," Energies, MDPI, vol. 12(2), pages 1-42, January.
    20. Peng Lu & Lin Ye & Bohao Sun & Cihang Zhang & Yongning Zhao & Jingzhu Teng, 2018. "A New Hybrid Prediction Method of Ultra-Short-Term Wind Power Forecasting Based on EEMD-PE and LSSVM Optimized by the GSA," Energies, MDPI, vol. 11(4), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1752-:d:156128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.