IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123011394.html
   My bibliography  Save this article

Development of a novel solar PV module model for reliable power prediction under real outdoor conditions

Author

Listed:
  • Kumar, Manish
  • Malik, Prashant
  • Chandel, Rahul
  • Chandel, Shyam Singh

Abstract

Accurately predicting and validating the power output of commercial solar PV power plants, remains an important research topic despite numerous studies already conducted. The precision and reliability of power prediction depends on the accuracy of the solar cell parameter values used in the model. A novel analytical technique has been developed in this study for PV power prediction, which employs one and two diode models with 3, 5, and 7 parameters. This new model only requires the manufacturer sheet data and has been validated through indoor and outdoor experiments. The performance of an experimental PV system is evaluated using the proposed solar cell models under varying irradiance and temperature levels. Additionally, the predicted output solar power was experimentally validated under real outdoor conditions in India with higher accuracy. The 7-parameter solar cell model is found to be the most accurate with the least RMSE of 0.02, followed by the 5 and 3-parameter models with RMSEs of 0.04 and 0.07, respectively. Compared to previous methods, the present new model predicts PV power with higher accuracy and lower percentage error. Finally, the study also identifies follow-up photovoltaic research areas.

Suggested Citation

  • Kumar, Manish & Malik, Prashant & Chandel, Rahul & Chandel, Shyam Singh, 2023. "Development of a novel solar PV module model for reliable power prediction under real outdoor conditions," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011394
    DOI: 10.1016/j.renene.2023.119224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrero, C. & Ramírez, D. & Rodríguez, J. & Platero, C.A., 2011. "Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I–V curve," Renewable Energy, Elsevier, vol. 36(11), pages 2972-2977.
    2. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    3. Farhoodnea, Masoud & Mohamed, Azah & Khatib, Tamer & Elmenreich, Wilfried, 2015. "Performance evaluation and characterization of a 3-kWp grid-connected photovoltaic system based on tropical field experimental results: new results and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1047-1054.
    4. Toledo, F.J. & Blanes, José M. & Galiano, V. & Laudani, A., 2021. "In-depth analysis of single-diode model parameters from manufacturer’s datasheet," Renewable Energy, Elsevier, vol. 163(C), pages 1370-1384.
    5. Orioli, Aldo & Di Gangi, Alessandra, 2019. "A procedure to evaluate the seven parameters of the two-diode model for photovoltaic modules," Renewable Energy, Elsevier, vol. 139(C), pages 582-599.
    6. Chennoufi, Khalid & Ferfra, Mohammed & Mokhlis, Mohcine, 2021. "An accurate modelling of Photovoltaic modules based on two-diode model," Renewable Energy, Elsevier, vol. 167(C), pages 294-305.
    7. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    8. Boutana, N. & Mellit, A. & Lughi, V. & Massi Pavan, A., 2017. "Assessment of implicit and explicit models for different photovoltaic modules technologies," Energy, Elsevier, vol. 122(C), pages 128-143.
    9. AlHajri, M.F. & El-Naggar, K.M. & AlRashidi, M.R. & Al-Othman, A.K., 2012. "Optimal extraction of solar cell parameters using pattern search," Renewable Energy, Elsevier, vol. 44(C), pages 238-245.
    10. Senturk, A. & Eke, R., 2017. "A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values," Renewable Energy, Elsevier, vol. 103(C), pages 58-69.
    11. Orioli, Aldo, 2020. "An accurate one-diode model suited to represent the current-voltage characteristics of crystalline and thin-film photovoltaic modules," Renewable Energy, Elsevier, vol. 145(C), pages 725-743.
    12. Arabshahi, M.R. & Torkaman, H. & Keyhani, A., 2020. "A method for hybrid extraction of single-diode model parameters of photovoltaics," Renewable Energy, Elsevier, vol. 158(C), pages 236-252.
    13. Malik, Prashant & Chandel, Shyam Singh, 2020. "Performance enhancement of multi-crystalline silicon photovoltaic modules using mirror reflectors under Western Himalayan climatic conditions," Renewable Energy, Elsevier, vol. 154(C), pages 966-975.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peñaranda Chenche, Luz Elena & Hernandez Mendoza, Oscar Saul & Bandarra Filho, Enio Pedone, 2018. "Comparison of four methods for parameter estimation of mono- and multi-junction photovoltaic devices using experimental data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2823-2838.
    2. Efstratios Batzelis, 2019. "Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment," Energies, MDPI, vol. 12(3), pages 1-26, January.
    3. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    4. Khan, Firoz & Al-Ahmed, Amir & Al-Sulaiman, Fahad A., 2021. "Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Tifidat, Kawtar & Maouhoub, Noureddine, 2023. "An efficient method for predicting PV modules performance based on the two-diode model and adaptable to the single-diode model," Renewable Energy, Elsevier, vol. 216(C).
    6. Li, W. & Paul, M.C. & Baig, H. & Siviter, J. & Montecucco, A. & Mallick, T.K. & Knox, A.R., 2019. "A three-point-based electrical model and its application in a photovoltaic thermal hybrid roof-top system with crossed compound parabolic concentrator," Renewable Energy, Elsevier, vol. 130(C), pages 400-415.
    7. Li, W. & Paul, M.C. & Rolley, M. & Sweet, T. & Gao, M. & Siviter, J. & Montecucco, A. & Knox, A.R. & Baig, H. & Mallick, T.K. & Fernandez, E.F. & Han, G. & Gregory, D.H. & Azough, F. & Freer, R., 2017. "A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells," Applied Energy, Elsevier, vol. 202(C), pages 755-771.
    8. Toledo, F. Javier & Galiano, Vicente & Blanes, Jose M. & Herranz, Victoria & Batzelis, Efstratios, 2024. "Photovoltaic single-diode model parametrization. An application to the calculus of the Euclidean distance to an I–V curve," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 794-819.
    9. Toledo, F.J. & Blanes, José M. & Galiano, V. & Laudani, A., 2021. "In-depth analysis of single-diode model parameters from manufacturer’s datasheet," Renewable Energy, Elsevier, vol. 163(C), pages 1370-1384.
    10. Vincenzo Stornelli & Mirco Muttillo & Tullio de Rubeis & Iole Nardi, 2019. "A New Simplified Five-Parameter Estimation Method for Single-Diode Model of Photovoltaic Panels," Energies, MDPI, vol. 12(22), pages 1-20, November.
    11. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    12. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    13. Long, Wen & Wu, Tiebin & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2021. "Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm," Energy, Elsevier, vol. 229(C).
    14. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    15. Choulli, Imade & Elyaqouti, Mustapha & Arjdal, El hanafi & Ben hmamou, Dris & Saadaoui, Driss & Lidaighbi, Souad & Elhammoudy, Abdelfattah & Abazine, Ismail, 2023. "Hybrid optimization based on the analytical approach and the particle swarm optimization algorithm (Ana-PSO) for the extraction of single and double diode models parameters," Energy, Elsevier, vol. 283(C).
    16. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.
    18. Chennoufi, Khalid & Ferfra, Mohammed & Mokhlis, Mohcine, 2021. "An accurate modelling of Photovoltaic modules based on two-diode model," Renewable Energy, Elsevier, vol. 167(C), pages 294-305.
    19. Esteban Velilla & Juan Bernardo Cano & Keony Jimenez & Jaime Valencia & Daniel Ramirez & Franklin Jaramillo, 2018. "Numerical Analysis to Determine Reliable One-Diode Model Parameters for Perovskite Solar Cells," Energies, MDPI, vol. 11(8), pages 1-12, July.
    20. Li, Fuxiang & Wu, Wei, 2022. "Coupled electrical-thermal performance estimation of photovoltaic devices: A transient multiphysics framework with robust parameter extraction and 3-D thermal analysis," Applied Energy, Elsevier, vol. 319(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.