IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v146y2010i1d10.1007_s10957-010-9654-9.html
   My bibliography  Save this article

An Inexact SQP Newton Method for Convex SC1 Minimization Problems

Author

Listed:
  • Y. D. Chen

    (Royal Bank of Scotland, 38/F, Cheung Kong Center)

  • Y. Gao

    (National University of Singapore)

  • Y.-J. Liu

    (Shenyang Institute of Aeronautical Engineering)

Abstract

In this paper, we present a globally and superlinearly convergent inexact SQP Newton method for solving large scale convex SC 1 minimization problems under mild conditions. In particular, the BD-regularity assumption made by Pang and Qi in Journal of Optimization Theory and Applications, 85 (1995), pp. 633–648 is replaced by a much more realistic assumption. Our numerical experiments conducted on least squares semidefinite programming with lower and upper bounds demonstrate that our inexact SQP Newton method is much more efficient than its exact version and is competitive with existing methods when the number of simple constraints is very large.

Suggested Citation

  • Y. D. Chen & Y. Gao & Y.-J. Liu, 2010. "An Inexact SQP Newton Method for Convex SC1 Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 33-49, July.
  • Handle: RePEc:spr:joptap:v:146:y:2010:i:1:d:10.1007_s10957-010-9654-9
    DOI: 10.1007/s10957-010-9654-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-010-9654-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-010-9654-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Defeng Sun & Jie Sun, 2002. "Semismooth Matrix-Valued Functions," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 150-169, February.
    2. Defeng Sun & Jie Sun, 2008. "Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 421-445, May.
    3. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Izmailov & A. Pogosyan, 2012. "Active-set Newton methods for mathematical programs with vanishing constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 425-452, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
    2. Youyicun Lin & Shenglong Hu, 2022. "$${\text {B}}$$ B -Subdifferential of the Projection onto the Generalized Spectraplex," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 702-724, February.
    3. Shenglong Hu & Guoyin Li, 2021. "$${\text {B}}$$ B -subdifferentials of the projection onto the matrix simplex," Computational Optimization and Applications, Springer, vol. 80(3), pages 915-941, December.
    4. Lingchen Kong & Levent Tunçel & Naihua Xiu, 2011. "Equivalent Conditions for Jacobian Nonsingularity in Linear Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 364-389, February.
    5. Nooshin Movahedian, 2014. "Nonsmooth Calculus of Semismooth Functions and Maps," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 415-438, February.
    6. Chungen Shen & Yunlong Wang & Wenjuan Xue & Lei-Hong Zhang, 2021. "An accelerated active-set algorithm for a quadratic semidefinite program with general constraints," Computational Optimization and Applications, Springer, vol. 78(1), pages 1-42, January.
    7. S. H. Kum & Y. D. Lim, 2009. "Coercivity and Strong Semismoothness of the Penalized Fischer-Burmeister Function for the Symmetric Cone Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 377-383, August.
    8. Defeng Sun & Jie Sun, 2008. "Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 421-445, May.
    9. Dong-Hui Li & Liqun Qi & Judy Tam & Soon-Yi Wu, 2004. "A Smoothing Newton Method for Semi-Infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 169-194, November.
    10. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    11. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    12. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    13. Ralf Münnich & Ekkehard Sachs & Matthias Wagner, 2012. "Calibration of estimator-weights via semismooth Newton method," Journal of Global Optimization, Springer, vol. 52(3), pages 471-485, March.
    14. M. L. Flegel & C. Kanzow, 2007. "Equivalence of Two Nondegeneracy Conditions for Semidefinite Programs," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 381-397, December.
    15. Y. Gao, 2006. "Newton Methods for Quasidifferentiable Equations and Their Convergence," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 417-428, December.
    16. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    17. J. Han & D. Sun, 1997. "Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 659-676, September.
    18. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    19. M. A. Tawhid & J. L. Goffin, 2008. "On Minimizing Some Merit Functions for Nonlinear Complementarity Problems under H-Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 127-140, October.
    20. C. Kanzow & H. Qi & L. Qi, 2003. "On the Minimum Norm Solution of Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 333-345, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:146:y:2010:i:1:d:10.1007_s10957-010-9654-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.