IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3069-d181271.html
   My bibliography  Save this article

An Improved OPP Problem Formulation for Distribution Grid Observability

Author

Listed:
  • Md Shafiullah

    (Center of Research Excellence in Renewable Energy, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • M. A. Abido

    (Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Md Ismail Hossain

    (Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • A. H. Mantawy

    (Power and Electrical Machines Engineering Department, Ain Shams University, Cairo 11517, Egypt)

Abstract

Phasor measurement units (PMUs) are becoming popular and populating the power system grids rapidly due to their wide range of benefits and applications. This research paper proposes a comprehensive, effective, and revised formulation of the optimal PMU placement (OPP) problem with a view to minimizing the required number of PMU and ensuring the maximum number of measurement redundancy subjected to the full observability of the distribution grids. The proposed formulation also incorporates the presence of passive measurements/zero injection buses (ZIB) and the channel availability of the installed PMU. Additionally, the formulation is extended to various contingency cases i.e., the single line outage and single PMU loss cases. This paper solves the proposed OPP formulation employing a heuristic technique called backtracking search algorithm (BSA) and tests its effectiveness through different IEEE standard distribution feeders. Additionally, this study compares the obtained results with the mixed integer linear programming (MILP)-based approach and the referenced works. The obtained results demonstrate the superiority of the proposed formulation and solution methodology compared to other methodologies.

Suggested Citation

  • Md Shafiullah & M. A. Abido & Md Ismail Hossain & A. H. Mantawy, 2018. "An Improved OPP Problem Formulation for Distribution Grid Observability," Energies, MDPI, vol. 11(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3069-:d:181271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyritsis, Evangelos & Andersson, Jonas & Serletis, Apostolos, 2017. "Electricity prices, large-scale renewable integration, and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 550-560.
    2. Shafiullah, Md & Rahman, Syed Masiur & Mortoja, Md. Golam & Al-Ramadan, Baqer, 2016. "Role of spatial analysis technology in power system industry: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 584-595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henrique Pires Corrêa & Rafael Ribeiro de Carvalho Vaz & Flávio Henrique Teles Vieira & Sérgio Granato de Araújo, 2019. "Reliability Based Genetic Algorithm Applied to Allocation of Fiber Optics Links for Power Grid Automation," Energies, MDPI, vol. 12(11), pages 1-26, May.
    2. Abhinav Sawhney & Federico Delfino & Barbara Bonvini & Stefano Bracco, 2024. "EMS for Active and Reactive Power Management in a Polygeneration Microgrid Feeding a PED," Energies, MDPI, vol. 17(3), pages 1-34, January.
    3. Hassan, Bryar A. & Rashid, Tarik A., 2020. "Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation," Applied Mathematics and Computation, Elsevier, vol. 370(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    2. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    3. Lyu, Chenyan & Do, Hung Xuan & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Volatility spillovers and carbon price in the Nordic wholesale electricity markets," Energy Economics, Elsevier, vol. 134(C).
    4. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    5. Samarth Kumar & David Schönheit & Matthew Schmidt & Dominik Möst, 2019. "Parsing the Effects of Wind and Solar Generation on the German Electricity Trade Surplus," Energies, MDPI, vol. 12(18), pages 1-17, September.
    6. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    7. Bert Willems & Juulia Zhou, 2020. "The Clean Energy Package and Demand Response: Setting Correct Incentives," Energies, MDPI, vol. 13(21), pages 1-19, October.
    8. Wang, Guotao & Liao, Qi & Wang, Chang & Liang, Yongtu & Zhang, Haoran, 2022. "Multiperiod optimal planning of biofuel refueling stations: A bi-level game-theoretic approach," Renewable Energy, Elsevier, vol. 200(C), pages 1152-1165.
    9. Shimomura, Mizue & Keeley, Alexander Ryota & Matsumoto, Ken'ichi & Tanaka, Kenta & Managi, Shunsuke, 2024. "Beyond the merit order effect: Impact of the rapid expansion of renewable energy on electricity market price," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    11. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Rai, Alan & Konstandatos, Otto, 2022. "Large-scale and rooftop solar generation in the NEM: A tale of two renewables strategies," Energy Economics, Elsevier, vol. 115(C).
    12. Tselika, Kyriaki & Tselika, Maria & Demetriades, Elias, 2024. "Quantifying the short-term asymmetric effects of renewable energy on the electricity merit-order curve," Energy Economics, Elsevier, vol. 132(C).
    13. Philip Tafarte & Annedore Kanngießer & Martin Dotzauer & Benedikt Meyer & Anna Grevé & Markus Millinger, 2020. "Interaction of Electrical Energy Storage, Flexible Bioenergy Plants and System-friendly Renewables in Wind- or Solar PV-dominated Regions," Energies, MDPI, vol. 13(5), pages 1-25, March.
    14. Kyritsis, Evangelos & Andersson, Jonas, 2019. "Causality in quantiles and dynamic relations in energy markets: (De)tails matter," Energy Policy, Elsevier, vol. 133(C).
    15. Wang, Yunfei & Li, Jinke & O'Leary, Nigel & Shao, Jing, 2024. "Banding: A game changer in the Renewables Obligation scheme in the United Kingdom," Energy Economics, Elsevier, vol. 130(C).
    16. Pedro M. S. Frade & João V. G. A. Vieira-Costa & Gerardo J. Osório & João J. E. Santana & João P. S. Catalão, 2018. "Influence of Wind Power on Intraday Electricity Spot Market: A Comparative Study Based on Real Data," Energies, MDPI, vol. 11(11), pages 1-19, November.
    17. Zambrano-Asanza, S. & Quiros-Tortos, J. & Franco, John F., 2021. "Optimal site selection for photovoltaic power plants using a GIS-based multi-criteria decision making and spatial overlay with electric load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Bigerna, Simona, 2018. "Estimating temperature effects on the Italian electricity market," Energy Policy, Elsevier, vol. 118(C), pages 257-269.
    19. Sirin, Selahattin Murat & Uz, Dilek & Sevindik, Irem, 2022. "How do variable renewable energy technologies affect firm-level day-ahead output decisions: Evidence from the Turkish wholesale electricity market," Energy Economics, Elsevier, vol. 112(C).
    20. Sheybanivaziri, Samaneh & Le Dréau, Jérôme & Kazmi, Hussain, 2024. "Forecasting price spikes in day-ahead electricity markets: techniques, challenges, and the road ahead," Discussion Papers 2024/1, Norwegian School of Economics, Department of Business and Management Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3069-:d:181271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.