IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v377y2020ics0096300320300886.html
   My bibliography  Save this article

Time-varying formation tracking control for high-order nonlinear multi-agent systems in fixed-time framework

Author

Listed:
  • Yang, Haijiao
  • Ye, Dan

Abstract

In this paper, we investigate the time-varying formation tracking control (TVFTC) problem for high-order uncertain nonlinear multi-agent systems (MASs) with a dynamic leader. Both unknown disturbances and uncertain nonlinear functions are considered. A novel fixed-time TVFTC strategy is proposed with two steps, which can avoid the communication loop problem. Firstly, a distributed fixed-time observer (DFTO) for the directed graph is introduced, such that the leader’s information can be accurately obtained by each agent within a bounded time. Secondly, by using fixed-time technique, a Lyapunov-function-based design process has been schemed to avoid the singularity problem. The developed TVFTC protocols can ensure all the followers achieve the desired time-varying formation and track the leader simultaneously. Furthermore, according to practical requirements, the configuration of formation can be chosen as arbitrary shape and the corresponding convergence time is allowed to be pre-estimated or preset. Stability analysis and some simulation examples for the control strategy are given, which further verify the validity.

Suggested Citation

  • Yang, Haijiao & Ye, Dan, 2020. "Time-varying formation tracking control for high-order nonlinear multi-agent systems in fixed-time framework," Applied Mathematics and Computation, Elsevier, vol. 377(C).
  • Handle: RePEc:eee:apmaco:v:377:y:2020:i:c:s0096300320300886
    DOI: 10.1016/j.amc.2020.125119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320300886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Lin & Yu, Jinpeng & Lin, Chong & Yu, Haisheng, 2017. "Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 23-35.
    2. Lee, Tae H. & Park, Ju H. & Jung, Hoyoul, 2018. "Network-based H∞ state estimation for neural networks using imperfect measurement," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 205-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    2. Miao, Suoxia & Su, Housheng, 2024. "Behaviors of matrix-weighted networks with antagonistic interactions," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    3. Li, Weihua & Zhang, Huaguang & Wang, Wei & Cao, Zhengbao, 2022. "Fully distributed event-triggered time-varying formation control of multi-agent systems subject to mode-switching denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 414(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    2. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    3. Wang, Jing & Hu, Xiaohui & Wei, Yunliang & Wang, Zhen, 2019. "Sampled-data synchronization of semi-Markov jump complex dynamical networks subject to generalized dissipativity property," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 853-864.
    4. Sharafian, Amin & Kanesan, Jeevan & Khairuddin, Anis Salwa Mohd & Ramanathan, Anand & Sharifi, Alireza & Bai, Xiaoshan, 2023. "A novel approach to state estimation of HIV infection dynamics using fixed-time fractional order observer," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Tan, Guoqiang & Wang, Zhanshan & Li, Cong, 2020. "H∞ performance state estimation of delayed static neural networks based on an improved proportional-integral estimator," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    6. Li, Xin & Wei, Guoliang & Ding, Derui, 2021. "Distributed resilient interval estimation for sensor networks under aperiodic denial-of-service attacks and adaptive event-triggered protocols," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    7. Hu, Jun & Li, Jiaxing & Kao, Yonggui & Chen, Dongyan, 2022. "Optimal distributed filtering for nonlinear saturated systems with random access protocol and missing measurements: The uncertain probabilities case," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    8. Zhang, Weijian & Du, Haibo & Chu, Zhaobi, 2022. "Robust discrete-time non-smooth consensus protocol for multi-agent systems via super-twisting algorithm," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    9. Li, Yueyang & Song, Xinmin & Zhang, Zhijie & Zhao, Dong & Wang, Zhonghua, 2019. "H∞ deconvolution filter design for uncertain linear discrete time-variant systems: A Krein space approach," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 131-143.
    10. Wang, Jun & Shi, Kaibo & Huang, Qinzhen & Zhong, Shouming & Zhang, Dian, 2018. "Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 211-230.
    11. Shi, Xuanxuan & Shen, Mouquan, 2019. "A new approach to feedback feed-forward iterative learning control with random packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 399-412.
    12. Zheng, Wei & Zhang, Zhiming & Sun, Fuchun & Lam, Hak Keung & Wen, Shuhuan, 2022. "Stability analysis and robust controller design for systems with mixed time-delays and stochastic nonlinearity via cone complementarity linearization," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    13. Fu, Haijing & Li, Jiahui & Han, Fei & Hou, Nan & Dong, Hongli, 2021. "Outlier-resistant bserver-based H∞ PID control under stochastic communication protocol," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    14. Zhou, Yu & Pan, Yingnan & Li, Shubo & Liang, Hongjing, 2020. "Event-triggered cooperative containment control for a class of uncertain non-identical networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    15. Hao, Li-Ying & Yu, Ying & Li, Hui, 2019. "Fault tolerant control of UMV based on sliding mode output feedback," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 433-455.
    16. Yin, Zeyang & Luo, Jianjun & Wei, Caisheng, 2019. "Quasi fixed-time fault-tolerant control for nonlinear mechanical systems with enhanced performance," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 157-173.
    17. Zeng, Hong-Bing & Zhai, Zheng-Liang & He, Yong & Teo, Kok-Lay & Wang, Wei, 2020. "New insights on stability of sampled-data systems with time-delay," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    18. Li, Hongjie & Zhu, Yinglian & jing, Liu & ying, Wang, 2018. "Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 1-15.
    19. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    20. Malik, Saddam Hussain & Tufail, Muhammad & Rehan, Muhammad & Ahmed, Shakeel, 2022. "State and output feedback local control schemes for nonlinear discrete-time 2-D Roesser systems under saturation, quantization and slope restricted input," Applied Mathematics and Computation, Elsevier, vol. 423(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:377:y:2020:i:c:s0096300320300886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.