IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v11y2011i7p1067-1080.html
   My bibliography  Save this article

When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators

Author

Listed:
  • Ester Pantaleo
  • Michele Tumminello
  • Fabrizio Lillo
  • Rosario Mantegna

Abstract

The use of improved covariance matrix estimators as an alternative to the sample estimator is considered an important approach for enhancing portfolio optimization. Here we empirically compare the performance of nine improved covariance estimation procedures using daily returns of 90 highly capitalized US stocks for the period 1997-2007. We find that the usefulness of covariance matrix estimators strongly depends on the ratio between the estimation period T and the number of stocks N, on the presence or absence of short selling, and on the performance metric considered. When short selling is allowed, several estimation methods achieve a realized risk that is significantly smaller than that obtained with the sample covariance method. This is particularly true when T/N is close to one. Moreover, many estimators reduce the fraction of negative portfolio weights, while little improvement is achieved in the degree of diversification. On the contrary, when short selling is not allowed and T > N, the considered methods are unable to outperform the sample covariance in terms of realized risk, but can give much more diversified portfolios than that obtained with the sample covariance. When T < N, the use of the sample covariance matrix and of the pseudo-inverse gives portfolios with very poor performance.

Suggested Citation

  • Ester Pantaleo & Michele Tumminello & Fabrizio Lillo & Rosario Mantegna, 2011. "When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1067-1080.
  • Handle: RePEc:taf:quantf:v:11:y:2011:i:7:p:1067-1080
    DOI: 10.1080/14697688.2010.534813
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697688.2010.534813
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2010.534813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    2. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    3. S. Reimann, 2007. "Price dynamics from a simple multiplicative random process model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(4), pages 381-394, April.
    4. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    5. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    6. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    7. Slanina, František, 2010. "A contribution to the systematics of stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3230-3239.
    8. Guevara Hidalgo, Esteban, 2017. "Bin size independence in intra-day seasonalities for relative prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 722-732.
    9. F. Wang & P. Weber & K. Yamasaki & S. Havlin & H. E. Stanley, 2007. "Statistical regularities in the return intervals of volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 123-133, January.
    10. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    11. Pištěk, Miroslav & Slanina, František, 2011. "Diversity of scales makes an advantage: The case of the Minority Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2549-2561.
    12. Muhammad Zeeshan Younas, 2020. "How Did Risk Management Methods Change After The 2007 Sub-Prime Mortgage Crisis In The United Kingdom?," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 9(1), pages 22-31, March.
    13. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    14. G. Livan & S. Alfarano & E. Scalas, 2011. "The fine structure of spectral properties for random correlation matrices: an application to financial markets," Papers 1102.4076, arXiv.org.
    15. Cornelis A. Los & Rossitsa M. Yalamova, 2004. "Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash," Finance 0409050, University Library of Munich, Germany.
    16. Conlon, T. & Ruskin, H.J. & Crane, M., 2007. "Random matrix theory and fund of funds portfolio optimisation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 565-576.
    17. Denis S. Grebenkov & Jeremy Serror, 2014. "Optimal Allocation of Trend Following Strategies," Papers 1410.8409, arXiv.org.
    18. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    19. Ouyang, F.Y. & Zheng, B. & Jiang, X.F., 2014. "Spatial and temporal structures of four financial markets in Greater China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 236-244.
    20. Danilo Delpini & Giacomo Bormetti, 2012. "Stochastic Volatility with Heterogeneous Time Scales," Papers 1206.0026, arXiv.org, revised Apr 2013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:7:p:1067-1080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.