IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v45y2009i3p466-469.html
   My bibliography  Save this article

Comparing tail variabilities of risks by means of the excess wealth order

Author

Listed:
  • Sordo, Miguel A.

Abstract

There is a growing interest in the actuarial community in employing certain tail conditional characteristics as measures of risk, which are informative about the variability of the losses beyond the value-at-risk (one example is the tail conditional variance, introduced by Furman and Landsman (2006a, 2006b)). However, comparisons of tail risks based on different measures may not always be consistent. In addition, conclusions based on these conditional characteristics depend on the choice of the tail probability p, so different p's also may produce contradictory conclusions. In this note, we suggest comparing tail variabilities of risks by means of the excess wealth order, which makes judgments only if large classes of tail conditional characteristics imply the same conclusion, independently of the choice of p.

Suggested Citation

  • Sordo, Miguel A., 2009. "Comparing tail variabilities of risks by means of the excess wealth order," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 466-469, December.
  • Handle: RePEc:eee:insuma:v:45:y:2009:i:3:p:466-469
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00132-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chateauneuf, Alain & Cohen, Michele & Meilijson, Isaac, 2004. "Four notions of mean-preserving increase in risk, risk attitudes and applications to the rank-dependent expected utility model," Journal of Mathematical Economics, Elsevier, vol. 40(5), pages 547-571, August.
    2. Hu, Taizhong & Chen, Jing & Yao, Junchao, 2006. "Preservation of the location independent risk order under convolution," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 406-412, April.
    3. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 459-465, February.
    4. Newbery, David, 1970. "A theorem on the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 264-266, September.
    5. Carole Bernard & Weidong Tian, 2009. "Optimal Reinsurance Arrangements Under Tail Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 709-725, September.
    6. Rojo, Javier & He, Guo Zhong, 1991. "New properties and characterizations of the dispersive ordering," Statistics & Probability Letters, Elsevier, vol. 11(4), pages 365-372, April.
    7. Ramos, Héctor M. & Sordo, Miguel A., 2003. "Dispersion measures and dispersive orderings," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 123-131, January.
    8. Sordo, Miguel A., 2009. "On the relationship of location-independent riskier order to the usual stochastic order," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 155-157, January.
    9. Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
    10. Sordo, Miguel A., 2008. "Characterizations of classes of risk measures by dispersive orders," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1028-1034, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2011. "Stochastic comparisons of distorted variability measures," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 11-17, July.
    2. Nozer Singpurwalla & Anna Gordon, 2014. "Auditing Shaked and Shanthikumar’s ‘excess wealth’," Annals of Operations Research, Springer, vol. 212(1), pages 3-19, January.
    3. Sordo, Miguel A. & Suárez-Llorens, Alfonso & Bello, Alfonso J., 2015. "Comparison of conditional distributions in portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 62-69.
    4. Gabriella Dellino & Jack P. C. Kleijnen & Carlo Meloni, 2012. "Robust Optimization in Simulation: Taguchi and Krige Combined," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 471-484, August.
    5. Belzunce, Félix & Pinar, José F. & Ruiz, José M. & Sordo, Miguel A., 2012. "Comparison of risks based on the expected proportional shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 292-302.
    6. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    7. Markus Huggenberger & Peter Albrecht, 2022. "Risk pooling and solvency regulation: A policyholder's perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 907-950, December.
    8. Patricia Ortega-Jiménez & Miguel A. Sordo & Alfonso Suárez-Llorens, 2021. "Stochastic Comparisons of Some Distances between Random Variables," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
    9. Belzunce, Félix & Suárez-Llorens, Alfonso & Sordo, Miguel A., 2012. "Comparison of increasing directionally convex transformations of random vectors with a common copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 385-390.
    10. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.
    11. Sordo, M.A. & Bello, A.J. & Suárez-Llorens, A., 2018. "Stochastic orders and co-risk measures under positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 105-113.
    12. Psarrakos, Georgios & Sordo, Miguel A., 2019. "On a family of risk measures based on proportional hazards models and tail probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 232-240.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2011. "Stochastic comparisons of distorted variability measures," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 11-17, July.
    2. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    3. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    4. Wenjun Jiang & Jiandong Ren & Ričardas Zitikis, 2017. "Optimal Reinsurance Policies under the VaR Risk Measure When the Interests of Both the Cedent and the Reinsurer Are Taken into Account," Risks, MDPI, vol. 5(1), pages 1-22, February.
    5. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    6. Belzunce, Félix & Suárez-Llorens, Alfonso & Sordo, Miguel A., 2012. "Comparison of increasing directionally convex transformations of random vectors with a common copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 385-390.
    7. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    8. Sánchez-Sánchez, M. & Sordo, M.A. & Suárez-Llorens, A. & Gómez-Déniz, E., 2019. "Deriving Robust Bayesian Premiums Under Bands Of Prior Distributions With Applications," ASTIN Bulletin, Cambridge University Press, vol. 49(1), pages 147-168, January.
    9. Sordo, Miguel A., 2008. "Characterizations of classes of risk measures by dispersive orders," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1028-1034, June.
    10. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    11. Miguel Sordo & Jorge Navarro & José Sarabia, 2014. "Distorted Lorenz curves: models and comparisons," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 761-780, April.
    12. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    13. Shapiro, Dmitry & Zhuang, Anan, 2015. "Dividends as a signaling device and the disappearing dividend puzzle," Journal of Economics and Business, Elsevier, vol. 79(C), pages 62-81.
    14. Félix Belzunce & Carolina Martínez-Riquelme, 2015. "Some results for the comparison of generalized order statistics in the total time on test and excess wealth orders," Statistical Papers, Springer, vol. 56(4), pages 1175-1190, November.
    15. Yang, Jianping & Zhuang, Weiwei & Hu, Taizhong, 2014. "Lp-metric under the location-independent risk ordering of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 321-324.
    16. Psarrakos, Georgios & Toomaj, Abdolsaeed & Vliora, Polyxeni, 2024. "A family of variability measures based on the cumulative residual entropy and distortion functions," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 212-222.
    17. Furman, Edward & Hackmann, Daniel & Kuznetsov, Alexey, 2020. "On log-normal convolutions: An analytical–numerical method with applications to economic capital determination," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 120-134.
    18. Markus Huggenberger & Peter Albrecht, 2022. "Risk pooling and solvency regulation: A policyholder's perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 907-950, December.
    19. Psarrakos, Georgios & Sordo, Miguel A., 2019. "On a family of risk measures based on proportional hazards models and tail probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 232-240.
    20. Lisa Parveen & Ruhul Ali Khan & Murari Mitra, 2024. "A two sample nonparametric test for variability via empirical likelihood methods," Statistical Papers, Springer, vol. 65(7), pages 4243-4265, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:3:p:466-469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.