IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v17y2011i4p307-320.html
   My bibliography  Save this article

Translation-invariant and positive-homogeneous risk measures and optimal portfolio management

Author

Listed:
  • Z. Landsman
  • U. Makov

Abstract

The problem of risk portfolio optimization with translation-invariant and positive-homogeneous risk measures, which includes value-at-risk (VaR) and tail conditional expectation (TCE), leads to the problem of minimizing a combination of a linear functional and a square root of a quadratic functional for the case of elliptical multivariate underlying distributions. In this paper, we provide an explicit closed-form solution of this minimization problem, and the condition under which this solution exists. The results are illustrated using the data of 10 stocks from NASDAQ/Computers. The distance between the VaR and TCE optimal portfolios has been investigated.

Suggested Citation

  • Z. Landsman & U. Makov, 2011. "Translation-invariant and positive-homogeneous risk measures and optimal portfolio management," The European Journal of Finance, Taylor & Francis Journals, vol. 17(4), pages 307-320.
  • Handle: RePEc:taf:eurjfi:v:17:y:2011:i:4:p:307-320
    DOI: 10.1080/1351847X.2010.481467
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/1351847X.2010.481467
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2010.481467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Landsman, Zinoviy & Makov, Udi, 2012. "Translation-invariant and positive-homogeneous risk measures and optimal portfolio management in the presence of a riskless component," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 94-98.
    2. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    3. Z. Landsman & U. Makov & T. Shushi, 2020. "Portfolio Optimization by a Bivariate Functional of the Mean and Variance," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 622-651, May.
    4. Zinoviy Landsman & Udi Makov, 2016. "Minimization of a Function of a Quadratic Functional with Application to Optimal Portfolio Selection," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 308-322, July.
    5. Aigner, Philipp & Schlütter, Sebastian, 2023. "Enhancing gradient capital allocation with orthogonal convexity scenarios," ICIR Working Paper Series 47/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:17:y:2011:i:4:p:307-320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.