IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v21y2015i13-14p1214-1252.html
   My bibliography  Save this article

Multivariate asset return prediction with mixture models

Author

Listed:
  • Marc S. Paolella

Abstract

The use of mixture distributions for modeling asset returns has a long history in finance. New methods of demonstrating support for the presence of mixtures in the multivariate case are provided. The use of a two-component multivariate normal mixture distribution, coupled with shrinkage via a quasi-Bayesian prior, is motivated, and shown to be numerically simple and reliable to estimate, unlike the majority of multivariate GARCH models in existence. Equally important, it provides a clear improvement over use of GARCH models feasible for use with a large number of assets, such as constant conditional correlation, dynamic conditional correlation, and their extensions, with respect to out-of-sample density forecasting. A generalization to a mixture of multivariate Laplace distributions is motivated via univariate and multivariate analysis of the data, and an expectation-maximization algorithm is developed for its estimation in conjunction with a quasi-Bayesian prior. It is shown to deliver significantly better forecasts than the mixed normal, with fast and numerically reliable estimation. Crucially, the distribution theory required for portfolio theory and risk assessment is developed.

Suggested Citation

  • Marc S. Paolella, 2015. "Multivariate asset return prediction with mixture models," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1214-1252, November.
  • Handle: RePEc:taf:eurjfi:v:21:y:2015:i:13-14:p:1214-1252
    DOI: 10.1080/1351847X.2012.760167
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2012.760167
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2012.760167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gambacciani, Marco & Paolella, Marc S., 2017. "Robust normal mixtures for financial portfolio allocation," Econometrics and Statistics, Elsevier, vol. 3(C), pages 91-111.
    2. Luca Merlo & Lea Petrella & Valentina Raponi, 2021. "Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation," Papers 2106.06518, arXiv.org.
    3. Marc S. Paolella, 2017. "The Univariate Collapsing Method for Portfolio Optimization," Econometrics, MDPI, vol. 5(2), pages 1-33, May.
    4. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
    5. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    6. Xu, Yang & Han, Liyan & Wan, Li & Yin, Libo, 2019. "Dynamic link between oil prices and exchange rates: A non-linear approach," Energy Economics, Elsevier, vol. 84(C).
    7. Wan, Li & Han, Liyan & Xu, Yang & Matousek, Roman, 2021. "Dynamic linkage between the Chinese and global stock markets: A normal mixture approach," Emerging Markets Review, Elsevier, vol. 49(C).
    8. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.
    9. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:21:y:2015:i:13-14:p:1214-1252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.