IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v250y2015icp552-570.html
   My bibliography  Save this article

Efficient GPU-based implementations of simplex type algorithms

Author

Listed:
  • Ploskas, Nikolaos
  • Samaras, Nikolaos

Abstract

Recent hardware advances have made it possible to solve large scale Linear Programming problems in a short amount of time. Graphical Processing Units (GPUs) have gained a lot of popularity and have been applied to linear programming algorithms. In this paper, we propose two efficient GPU-based implementations of the Revised Simplex Algorithm and a Primal–Dual Exterior Point Simplex Algorithm. Both parallel algorithms have been implemented in MATLAB using MATLAB’s Parallel Computing Toolbox. Computational results on randomly generated optimal sparse and dense linear programming problems and on a set of benchmark problems (netlib, kennington, Mészáros) are also presented. The results show that the proposed GPU implementations outperform MATLAB’s interior point method.

Suggested Citation

  • Ploskas, Nikolaos & Samaras, Nikolaos, 2015. "Efficient GPU-based implementations of simplex type algorithms," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 552-570.
  • Handle: RePEc:eee:apmaco:v:250:y:2015:i:c:p:552-570
    DOI: 10.1016/j.amc.2014.10.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314014714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.10.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Hall, 2010. "Towards a practical parallelisation of the simplex method," Computational Management Science, Springer, vol. 7(2), pages 139-170, April.
    2. Paparrizos, Konstantinos & Samaras, Nikolaos & Stephanides, George, 2003. "An efficient simplex type algorithm for sparse and dense linear programs," European Journal of Operational Research, Elsevier, vol. 148(2), pages 323-334, July.
    3. Jonathan Eckstein & İ. İlkay Boduroğlu & Lazaros C. Polymenakos & Donald Goldfarb, 1995. "Data-Parallel Implementations of Dense Simplex Methods on the Connection Machine CM-2," INFORMS Journal on Computing, INFORMS, vol. 7(4), pages 402-416, November.
    4. Robert E. Bixby & Alexander Martin, 2000. "Parallelizing the Dual Simplex Method," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 45-56, February.
    5. Jacek Gondzio, 2012. "Matrix-free interior point method," Computational Optimization and Applications, Springer, vol. 51(2), pages 457-480, March.
    6. J. Hall & K. McKinnon, 1998. "ASYNPLEX, an asynchronous parallelrevised simplex algorithm," Annals of Operations Research, Springer, vol. 81(0), pages 27-50, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Paparrizos & Nikolaos Samaras & Angelo Sifaleras, 2015. "Exterior point simplex-type algorithms for linear and network optimization problems," Annals of Operations Research, Springer, vol. 229(1), pages 607-633, June.
    2. Hua, Hao & Hovestadt, Ludger & Tang, Peng & Li, Biao, 2019. "Integer programming for urban design," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1125-1137.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Péter Tar & Bálint Stágel & István Maros, 2017. "Parallel search paths for the simplex algorithm," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 967-984, December.
    2. Gondzio, Jacek, 2016. "Crash start of interior point methods," European Journal of Operational Research, Elsevier, vol. 255(1), pages 308-314.
    3. Robert E. Bixby & Alexander Martin, 2000. "Parallelizing the Dual Simplex Method," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 45-56, February.
    4. J. Hall, 2010. "Towards a practical parallelisation of the simplex method," Computational Management Science, Springer, vol. 7(2), pages 139-170, April.
    5. Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
    6. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    7. Sebastiaan Breedveld & Bas Berg & Ben Heijmen, 2017. "An interior-point implementation developed and tuned for radiation therapy treatment planning," Computational Optimization and Applications, Springer, vol. 68(2), pages 209-242, November.
    8. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    9. J. Gondzio & F. N. C. Sobral, 2019. "Quasi-Newton approaches to interior point methods for quadratic problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 93-120, September.
    10. Konstantinos Paparrizos & Nikolaos Samaras & Angelo Sifaleras, 2015. "Exterior point simplex-type algorithms for linear and network optimization problems," Annals of Operations Research, Springer, vol. 229(1), pages 607-633, June.
    11. Filippo Zanetti & Jacek Gondzio, 2023. "An Interior Point–Inspired Algorithm for Linear Programs Arising in Discrete Optimal Transport," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1061-1078, September.
    12. Donghoon Lee & Matthew Wiswall, 2007. "A Parallel Implementation of the Simplex Function Minimization Routine," Computational Economics, Springer;Society for Computational Economics, vol. 30(2), pages 171-187, September.
    13. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    14. Bethany L. Nicholson & Wei Wan & Shivakumar Kameswaran & Lorenz T. Biegler, 2018. "Parallel cyclic reduction strategies for linear systems that arise in dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 70(2), pages 321-350, June.
    15. Jesús Latorre & Santiago Cerisola & Andrés Ramos & Rafael Palacios, 2009. "Analysis of stochastic problem decomposition algorithms in computational grids," Annals of Operations Research, Springer, vol. 166(1), pages 355-373, February.
    16. Cecilia Orellana Castro & Manolo Rodriguez Heredia & Aurelio R. L. Oliveira, 2023. "Recycling basic columns of the splitting preconditioner in interior point methods," Computational Optimization and Applications, Springer, vol. 86(1), pages 49-78, September.
    17. Kimon Fountoulakis & Jacek Gondzio, 2016. "Performance of first- and second-order methods for $$\ell _1$$ ℓ 1 -regularized least squares problems," Computational Optimization and Applications, Springer, vol. 65(3), pages 605-635, December.
    18. Manolo Rodriguez Heredia & Aurelio Ribeiro Leite Oliveira, 2020. "A new proposal to improve the early iterations in the interior point method," Annals of Operations Research, Springer, vol. 287(1), pages 185-208, April.
    19. Songqiang Qiu, 2019. "Convergence of a stabilized SQP method for equality constrained optimization," Computational Optimization and Applications, Springer, vol. 73(3), pages 957-996, July.
    20. Yiran Cui & Keiichi Morikuni & Takashi Tsuchiya & Ken Hayami, 2019. "Implementation of interior-point methods for LP based on Krylov subspace iterative solvers with inner-iteration preconditioning," Computational Optimization and Applications, Springer, vol. 74(1), pages 143-176, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:250:y:2015:i:c:p:552-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.